Podrobno

Improving the efficiency of steel plate surface defect classification by reducing the labelling cost using deep active learning
ID Yang, Wenjia (Avtor), ID Zhou, Youhang (Avtor), ID Meng, Gaolei (Avtor), ID Li, Yuze (Avtor), ID Gong, Tianyu (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (3,56 MB)
MD5: 55DAD1D9380A95F1B58E288ECFC9BCE0
URLURL - Izvorni URL, za dostop obiščite ttps://www.sv-jme.eu/sl/article/improving-the-efficiency-of-steel-plate-surface-defect-classification-by-reducing-the-labeling-cost-using-deep-active-learning-method/ Povezava se odpre v novem oknu

Izvleček
Efficient surface defects classification is one of the research hotpots in steel plate defect recognition. Compared with traditional methods, deep learning methods have been effective in improving classification accuracy and efficiency, but require a large amount of labeled data, resulting in limited improvement of detection efficiency. To reduce the labeling effort under the premise of satisfying the classification accuracy, a deep active learning method is proposed for steel plate surface defects classification. Firstly, a lightweight convolutional neural network is designed, which speeds up the training process and enhances the model regularization. Secondly, a novel uncertainty-based sampling strategy, which calculates Kullback-Leibler (KL) divergence between two kinds of distributions, is used as an uncertainty measure to select new samples for labeling. Finally, the performance of the proposed method is validated using the steel surface defects dataset from Northeastern University (NEU-CLS) and the milling steel surface defects dataset from a local laboratory. The proposed global pooling-based classifier with global average pooling (GAPC) network model combined with the Kullback-Leibler divergence sampling (KLS) strategy has the best performance in the classification of steel plate surface defects. This method achieves 97 % classification accuracy with 44 % labeled data on the NEU-CLS dataset and 92.3 % classification accuracy with 50 % labeled data on the milling steel surface defects dataset. The experimental results show that the proposed method can achieve steel surface defects classification accuracy of not less than 92 % with no more than 50 % of the dataset to be labeled, which indicates that this method has potential application in surface defect classification of industrial products.

Jezik:Angleški jezik
Ključne besede:surface defect classification, convolutional neural network, active learning, global pooling
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Poslano v recenzijo:18.12.2023
Datum sprejetja članka:09.10.2024
Datum objave:01.12.2024
Leto izida:2024
Št. strani:Str. 554-568
Številčenje:Vol. 70, no. 11/12
PID:20.500.12556/RUL-166774 Povezava se odpre v novem oknu
UDK:621
ISSN pri članku:2536-3948
DOI:10.5545/sv-jme.2023.900 Povezava se odpre v novem oknu
COBISS.SI-ID:223799043 Povezava se odpre v novem oknu
Datum objave v RUL:24.01.2025
Število ogledov:214
Število prenosov:92
Metapodatki:XML DC-XML DC-RDF
:
YANG, Wenjia, ZHOU, Youhang, MENG, Gaolei, LI, Yuze in GONG, Tianyu, 2024, Improving the efficiency of steel plate surface defect classification by reducing the labelling cost using deep active learning. Strojniški vestnik [na spletu]. 2024. Vol. 70, no. 11/12, p. 554–568. [Dostopano 4 maj 2025]. DOI 10.5545/sv-jme.2023.900. Pridobljeno s: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=166774
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Strojniški vestnik
Skrajšan naslov:Stroj. vestn.
Založnik:Fakulteta za strojništvo
ISSN:2536-3948
COBISS.SI-ID:294943232 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:klasifikacija površinskih napak, konvolucijska nevronska mreža, aktivno učenje, globalno združevanje

Projekti

Financer:Drugi - Drug financer ali več financerjev
Program financ.:National Natural Science Foundation of China
Številka projekta:52175254

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Hunan Province, Postgraduate Scientific Research Innovation Project
Številka projekta:CX20220603

Financer:Drugi - Drug financer ali več financerjev
Program financ.:Hunan Province, Postgraduate Scientific Research Innovation Project
Številka projekta:CX20230550

Podobna dela

Podobna dela v RUL:Iščem podobna dela...Prosim, počakajte...
Podobna dela v drugih slovenskih zbirkah:

Nazaj