Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Improving the efficiency of steel plate surface defect classification by reducing the labelling cost using deep active learning
ID
Yang, Wenjia
(
Avtor
),
ID
Zhou, Youhang
(
Avtor
),
ID
Meng, Gaolei
(
Avtor
),
ID
Li, Yuze
(
Avtor
),
ID
Gong, Tianyu
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(3,56 MB)
MD5: 55DAD1D9380A95F1B58E288ECFC9BCE0
URL - Izvorni URL, za dostop obiščite
ttps://www.sv-jme.eu/sl/article/improving-the-efficiency-of-steel-plate-surface-defect-classification-by-reducing-the-labeling-cost-using-deep-active-learning-method/
Galerija slik
Izvleček
Efficient surface defects classification is one of the research hotpots in steel plate defect recognition. Compared with traditional methods, deep learning methods have been effective in improving classification accuracy and efficiency, but require a large amount of labeled data, resulting in limited improvement of detection efficiency. To reduce the labeling effort under the premise of satisfying the classification accuracy, a deep active learning method is proposed for steel plate surface defects classification. Firstly, a lightweight convolutional neural network is designed, which speeds up the training process and enhances the model regularization. Secondly, a novel uncertainty-based sampling strategy, which calculates Kullback-Leibler (KL) divergence between two kinds of distributions, is used as an uncertainty measure to select new samples for labeling. Finally, the performance of the proposed method is validated using the steel surface defects dataset from Northeastern University (NEU-CLS) and the milling steel surface defects dataset from a local laboratory. The proposed global pooling-based classifier with global average pooling (GAPC) network model combined with the Kullback-Leibler divergence sampling (KLS) strategy has the best performance in the classification of steel plate surface defects. This method achieves 97 % classification accuracy with 44 % labeled data on the NEU-CLS dataset and 92.3 % classification accuracy with 50 % labeled data on the milling steel surface defects dataset. The experimental results show that the proposed method can achieve steel surface defects classification accuracy of not less than 92 % with no more than 50 % of the dataset to be labeled, which indicates that this method has potential application in surface defect classification of industrial products.
Jezik:
Angleški jezik
Ključne besede:
surface defect classification
,
convolutional neural network
,
active learning
,
global pooling
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Poslano v recenzijo:
18.12.2023
Datum sprejetja članka:
09.10.2024
Datum objave:
01.12.2024
Leto izida:
2024
Št. strani:
Str. 554-568
Številčenje:
Vol. 70, no. 11/12
PID:
20.500.12556/RUL-166774
UDK:
621
ISSN pri članku:
2536-3948
DOI:
10.5545/sv-jme.2023.900
COBISS.SI-ID:
223799043
Datum objave v RUL:
24.01.2025
Število ogledov:
491
Število prenosov:
157
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Strojniški vestnik
Skrajšan naslov:
Stroj. vestn.
Založnik:
Fakulteta za strojništvo
ISSN:
2536-3948
COBISS.SI-ID:
294943232
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
klasifikacija površinskih napak
,
konvolucijska nevronska mreža
,
aktivno 
učenje
,
globalno združevanje
Projekti
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
National Natural Science Foundation of China
Številka projekta:
52175254
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Hunan Province, Postgraduate Scientific Research Innovation Project
Številka projekta:
CX20220603
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Hunan Province, Postgraduate Scientific Research Innovation Project
Številka projekta:
CX20230550
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj