Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Polynomial regression-based predictive expert system for enhancing hydraulic press performance over a 5g network
ID
Jankovič, Denis
(
Avtor
),
ID
Pipan, Miha
(
Avtor
),
ID
Šimic, Marko
(
Avtor
),
ID
Herakovič, Niko
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(13,89 MB)
MD5: EE21DC3F5B64295C0D55AF3036C878A4
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2076-3417/14/24/12016
Galerija slik
Izvleček
In industrial applications, hydraulic presses maintain workloads by controlling the hydraulic cylinder to extend and retract, ensuring optimum tracking performance in terms of position and force. Dealing with nonlinear and multinode systems, such as hydraulic systems, often requires an advanced approach that frequently includes machine learning and artificial intelligence methods. Introducing an adaptive control system to significantly improve the response of hydraulic presses is a challenge. Therefore, a polynomial regression model predictive control (PR-MPC) mechanism is proposed in this paper to compensate for external disturbances such as the forming processes and friction dynamics. Using polynomial regression modeling and least squares optimization, the approach produces highly accurate data-driven models with an R2 value of 0.948 to 0.999. The simplicity of polynomial regression facilitates the integration of smart algorithms into an expert system with additional decision-making rules. Remote adaptive control integrated within a 5G network is based on I 4.0 distributed system guidelines that provide insights into the behavior of the hydraulic press. The results of real-time experiments have shown that the PR-MPC mechanism integrated into the expert system reduces the absolute response error of the hydraulic press by up to 98.7% compared to the initial control system with a PID regulation.
Jezik:
Angleški jezik
Ključne besede:
hydraulic press
,
artificial intelligence
,
polynomial regression modeling
,
expert systems
,
decision-making
,
remote control
,
5G network
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
24 str.
Številčenje:
Vol. 14, iss. 24, [art. no.] 12016
PID:
20.500.12556/RUL-166190
UDK:
004.8
ISSN pri članku:
2076-3417
DOI:
10.3390/app142412016
COBISS.SI-ID:
220374019
Datum objave v RUL:
24.12.2024
Število ogledov:
567
Število prenosov:
131
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Applied sciences
Skrajšan naslov:
Appl. sci.
Založnik:
MDPI
ISSN:
2076-3417
COBISS.SI-ID:
522979353
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Projekti
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
J2-4470
Naslov:
Raziskave zanesljivosti in učinkovitosti računanja na robu v pametni tovarni z uporabo tehnologij 5G
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0248
Naslov:
Inovativni izdelovalni sistemi in procesi
Financer:
EC - European Commission
Program financ.:
Horizon 2020
Številka projekta:
101087348
Naslov:
Strengthening the capacity for excellence of Slovenian and Croatian innovation ecosystems to support the digital and green transitions of maritime regions
Akronim:
INNO2MARE
Financer:
EC - European Commission
Program financ.:
Horizon 2020
Številka projekta:
101058693
Naslov:
Sustainable Transition to the Agile and Green Enterprise
Akronim:
STAGE
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj