Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Annual 30-m maps of global grassland class and extent (2000–2022) based on spatiotemporal Machine Learning
ID
Parente, Leandro
(
Avtor
),
ID
Sloat, Lindsey
(
Avtor
),
ID
Mesquita, Vinicius
(
Avtor
),
ID
Consoli, Davide
(
Avtor
),
ID
Stanimirova, Radost
(
Avtor
),
ID
Hengl, Tomislav
(
Avtor
),
ID
Bonannella, Carmelo
(
Avtor
),
ID
Teles, Nathália
(
Avtor
),
ID
Wheeler, Ichsani
(
Avtor
),
ID
Hunter, Maria
(
Avtor
),
ID
Malek, Žiga
(
Avtor
),
ID
Stolle, Fred
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(5,87 MB)
MD5: 646B7BBC728D46903C418B18713B9430
URL - Izvorni URL, za dostop obiščite
https://www.nature.com/articles/s41597-024-04139-6
Galerija slik
Izvleček
The paper describes the production and evaluation of global grassland extent mapped annually for 2000–2022 at 30 m spatial resolution. The dataset showing the spatiotemporal distribution of cultivated and natural/semi-natural grassland classes was produced by using GLAD Landsat ARD-2 image archive, accompanied by climatic, landform and proximity covariates, spatiotemporal machine learning (per-class Random Forest) and over 2.3 M reference samples (visually interpreted in Very High Resolution imagery). Custom probability thresholds (based on five-fold spatial cross-validation) were used to derive dominant class maps with balanced user’s and producer’s accuracy, resulting in f1 score of 0.64 and 0.75 for cultivated and natural/semi-natural grassland, respectively. The produced maps (about 4 TB in size) are available under an open data license as Cloud-Optimized GeoTIFFs and as Google Earth Engine assets. The suggested uses of data include (1) integration with other compatible land cover products and (2) tracking the intensity and drivers of conversion of land to cultivated grasslands and from natural / semi-natural grasslands into other land use systems.
Jezik:
Angleški jezik
Ključne besede:
grasslands
,
global grassland class
,
maps
,
spatiotemporal distribution
,
machine learning
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
BF - Biotehniška fakulteta
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
22 str.
Številčenje:
Vol. 11, art. 1303
PID:
20.500.12556/RUL-165996
UDK:
63
ISSN pri članku:
2052-4463
DOI:
10.1038/s41597-024-04139-6
COBISS.SI-ID:
219245571
Datum objave v RUL:
16.12.2024
Število ogledov:
491
Število prenosov:
98
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Scientific data
Založnik:
Nature Publishing Group
ISSN:
2052-4463
COBISS.SI-ID:
523393305
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
travinje
,
zemljevidi
,
strojno učenje
Projekti
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Bezos Earth Fund
Naslov:
Grant to the Land & Carbon Lab
Financer:
EC - European Commission
Program financ.:
HE
Številka projekta:
101059548
Naslov:
Open-Earth-Monitor Cyberinfrastructure
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Deutsche Forschungsgemeinschaft (DFG)
Naslov:
Senior scientist program
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj