Podrobno

Robotsko sestavljanje paličja gradbenega odra
ID BALANTIČ, ANŽE (Avtor), ID Mihelj, Matjaž (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Nemec, Bojan (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (3,34 MB)
MD5: 89AB6BCAD7424D9490EB28DCC85083B2

Izvleček
V magistrski nalogi smo obravnavali tematike, ki so povezane z aplikacijama vstavljanja vertikalne nosilne palice v podnožje paličja in vstavljanje prečne povezovalne palice v sosednji vertikalni palici. Te tematike zajemajo vstavljanje enega zatiča v odprtino, sočasno vstavljanje dveh zatičev v dve odprtini in obdelavo slik s konvolucijsko nevronsko mrežo. Razvili smo dve aplikaciji. Aplikacija vstavljanja vertikalne nosilne palice v podnožje paličja predstavlja vstavljanje zatiča v odprtino. Pri določanju točk vstavljanja smo si pomagali z nevronsko mrežo YOLACT, ki je namenjena segmentaciji objektov na slikah. Za vstavljanje smo morali določiti le os vstavljanja, kar smo dosegli s poravnavo kamere v središče podnožja in z branjem koordinat kamere v prostoru. Aplikacija vstavljanja prečne povezovalne palice v sosednji vertikalni nosilni palici je predstavljala zahtevnejši problem, ki smo ga obravnavali kot sočasno vstavljanje dveh zatičev v dve odprtini. Za uspešno vstavljanje smo morali določiti pozicijo točk vstavljanja v 3D prostoru na podlagi zajete 2D slike. To smo lahko storili zato, ker se točke vstavljanja zaradi zasnove paličja nahajajo na vnaprej znanih višinah. Obe aplikaciji smo najprej zasnovali v simulacijskem okolju, nato pa rezultate preverili tudi v laboratorijski postavitvi.

Jezik:Slovenski jezik
Ključne besede:vstavljanje zatiča v odprtino, konvolucijske nevronske mreže, YOLACT, robotsko sestavljanje
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FE - Fakulteta za elektrotehniko
Leto izida:2024
PID:20.500.12556/RUL-165434 Povezava se odpre v novem oknu
COBISS.SI-ID:219312643 Povezava se odpre v novem oknu
Datum objave v RUL:06.12.2024
Število ogledov:440
Število prenosov:118
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Robotic assembly of scaffolding structures
Izvleček:
In this master's thesis, we addressed topics related to the applications of inserting a vertical load-bearing post into a lattice base and inserting a transverse connecting crossbar into an adjacent vertical post. These topics include the peg-in-hole problem, simultaneous insertion of two pegs into two holes, and convolutional neural networks. We developed two applications. The application for inserting the vertical load-bearing post into the lattice base represents a peg-in-hole problem. In determining the insertion points, we used the YOLACT neural network, which is designed for object segmentation in images. For insertion, we only needed to determine the insertion axis, which we achieved by aligning the camera with the center of the base and reading the camera coordinates in space. The application for inserting the transverse connecting crossbar into the adjacent vertical load-bearing post presented a more complex problem, which we approached as the simultaneous insertion of two pegs into two holes. For successful insertion, we needed to determine the insertion points in 3D space based on a captured 2D image. This was feasible because the insertion points, due to the design of the lattice structure, are located at predefined heights. We first designed both applications in a simulation environment and then validated the results in a laboratory setup.

Ključne besede:peg-in-hole problem, convolutional neural networks, YOLACT, robotic assembly

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj