izpis_h1_title_alt

Postavitev napredne robotske celice za namen ločevanja odpadne embalaže
ID STARIČ, DAVID (Avtor), ID Logar, Vito (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Kramberger, Aljaž (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (6,63 MB)
MD5: 213999752EEB51BEC8589829FB8D2039

Izvleček
V okviru magistrskega dela je predstavljen razvoj robotske celice za namen ločevanja odpadne embalaže. Robotska celica je sestavljena iz robotskega manipulatorja, različnih prijemal, tekočega traku in kamere za določanje točk prijema objekta in klasifikacijo embalaže. Robotski manipulator uporabljen v robotski aplikaciji je sodelujoči robot UR10e in ima možnost izmenjave dveh različnih prijemal, in sicer klasičnega dvoprstnega prijemala Robotiq in adaptivnega prijemala z vakuumskim priseskom in dodatnima mehkima prstoma. Tekoči trak je uporabljen za namen premika objektov od kamere do dosega robotskega manipulatorja. Voden je s frekvenčnim pretvornikom, ki ga upravljamo preko programirljivega logičnega krmilnika. Naše delo je zajemalo postavitev in vodenje robotskega manipulatorja, vključitev in nadzor tekočega traku preko programirljivega logičnega krmilnika, določanje točk prijema s pomočjo kamere in različnih metod ter združitev vseh posameznih funkcionalnosti sistema v polno delujoč sistem. Za uspešno ločevanje embalaže je bilo potrebno objekte klasificirati, glede na različne vrste materiala. Klasifikacijo objektov je razvilo zunanje podjetje in smo jo v sistem le vključili in tako pridobili informacijo o tem, v kateri zaboj bo robot odložil prijeti objekt. V nadaljevanju dela opisujemo posamezne funkcionalnosti, ki smo jih v delujoč sistem povezali na glavnem računalniku. Za to smo uporabili robotski operacijski sistem (ROS), ki je omogočal modularno zasnovo celotnega sistema. Vsaka funkcionalnost je bila implementirana kot ločeno vozlišče, ki je komuniciralo z drugimi vozlišči preko standardnih protokolov z vnaprej določenimi strukturami sporočil. Integracija posamezne strojne opreme je potekala s pomočjo TCP/IP transportne plasti. Robotski manipulator je voden preko programske knjižnice \emph{ur-rtde}. Gre za knjižnico, ki za nadzor in prejemanje podatkov uporablja RTDE oziroma izmenjavo podatkov v realnem času. Razvita je bila na Univerzi SDU (angl. University of Southern Denmark), kjer je razvoj robotske celice tudi potekal. Za vključitev knjižnice v sistem smo razvili svoj programski razred, ki je služil kot integrator programske knjižnice z dodatnimi funkcionalnostmi prilagojenimi našemu sistemu. Razred smo nato vključili v vozlišče namenjeno vodenju robota. Programirljivi logični krmilnik s pomočjo katerega smo upravljali tekoči trak je z glavnim računalnikom komuniciral preko OPC UA protokola. Premik tekočega traku smo spremljali z inkrementalnim enkoderjem in tako dobili informacijo o relativni razdalji, ki jo je opravil tekoči trak. Za protokol vzpostavitve komunikacije ter branje in pisanje podatkov v krmilnik smo razvili svoj programski razred, ki smo ga nato na enak način, kot pri vodenju robota implementirali v samostojno vozlišče robotskega operacijskega sistema. V zadnjem delu naloge predstavimo in testiramo uporabljene metode s katerimi smo določili točke prijema objekta. Pri razvoju sistema smo si za določanje točke prijema pomagali z ročno metodo, ki smo jo nato nadgradili z dvema samodejnima. Ročna in samodejna izhodiščna metoda sta omogočali uporabo obeh prijemal, druga ki temelji na uporabi globoke nevronske mreže pa le klasično dvoprstno prijemalo. Pri ročni metodi smo zaključili, da je ta popolnoma uspešna, saj vsebuje človeški faktor, ki izbere točko prijema. Testiranje samodejnih metod smo opravili na različnih objektih, ki se pogosto znajdejo med odpadno embalažo. Za ovrednotenje vsake izmed metod smo opravili enako število testnih prijemov s prijemalom, ki se je pri metodi izkazalo za bolj uspešno. V zaključku povzamemo rezultate dela, ovrednotimo zastavljene cilje in omenimo prednosti ter slabosti sistema. Dotaknemo se tudi izboljšav, ki bi rešile težave in omejitve sistema ter na koncu izpostavimo potencialne njegovega nadaljnjega razvoja.

Jezik:Slovenski jezik
Ključne besede:ločevanje embalaže, robotska celica, robotski vid, ROS, PLK, globoka nevronska mreža
Vrsta gradiva:Magistrsko delo/naloga
Organizacija:FE - Fakulteta za elektrotehniko
Leto izida:2024
PID:20.500.12556/RUL-163776 Povezava se odpre v novem oknu
Datum objave v RUL:10.10.2024
Število ogledov:101
Število prenosov:22
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Development of an advanced robot cell for waste packaging separation
Izvleček:
The thesis addresses the development of a robotic cell for the purpose of separating packaging waste. The robotic cell consists of a robotic manipulator, various grippers, a conveyor belt, and a camera for determining object grasping points and classifying the packaging. The robotic manipulator used in the application is a collaborative robot UR10e, capable of exchanging two different grippers: a classic two-finger gripper by Robotiq and a soft gripper with a vacuum suction. The conveyor belt is used to move objects from the camera to the reach of the robotic manipulator. It is controlled by a frequency driver, managed via a programmable logic controller (PLC). Our work involved setting up and controlling the robotic manipulator, integrating and controlling the conveyor belt via the PLC, determining grasping points with the help of a camera and various methods, and combining all individual functionalities into a fully operational system. For successful object separation, it was necessary to classify the objects based on different material types. This classification was developed by an external company and integrated into the system to provide information on which bin the robot should place the gripped object. In the following sections, we describe the individual functionalities integrated into the main computer system. We used the Robot Operating System (ROS), which allowed a modular design of the entire system. Each functionality was implemented as a separate node, communicating with other nodes via standard protocols with predefined message structures. Hardware integration was carried out using the TCP/IP transport layer. The robotic manipulator is controlled via the \emph{ur-rtde} software library, which uses RTDE (Real-Time Data Exchange) to control the robot in real time. The library was developed at the University of Southern Denmark (SDU), where the robotic cell development also took place. To integrate the library into the system, we developed our own class, serving as an integrator of the library with additional functionalities customized to our system. This class was then included in the node responsible for robot control. The PLC controlling the conveyor belt communicated with the main computer via the OPC UA protocol. The conveyor belt's movement was monitored with an incremental encoder, providing information on the relative distance traveled by the belt. We developed our own class for the communication protocol, reading and writing data to the PLC, which was implemented in an independent ROS node similar to the robot control. In the last part of the thesis, we present and test the methods used to determine object grasping points. For system development, we started with a manual method for determining grasping points, which was later upgraded with two automatic methods. The manual and baseline automatic method allowed the use of both grippers, while the second method, based on a deep neural network, only supported the classic two-finger gripper. We concluded that the manual method was completely successful as it includes the human factor for selecting grasping points. The automatic methods were tested on various objects commonly found in packaging waste. We conducted the same number of test grips with the gripper that proved to be more successful for each method to evaluate them. In conclusion, we summarize the results of the work, evaluate the set goals, and mention the advantages and disadvantages of the system. We also touch on possible improvements to address system issues and limitations, and finally highlight the potential for further development.

Ključne besede:separating packaging waste, robot cell, vision, ROS, PLC, deep neural network

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj