izpis_h1_title_alt

Fast winning strategies for Staller in the Maker-Breaker domination game
ID Bujtás, Csilla (Avtor), ID Dokyeesun, Pakanun (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (434,93 KB)
MD5: E43790D173D19824080A533754EF8171
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S0166218X23004286 Povezava se odpre v novem oknu

Izvleček
The Maker-Breaker domination game is played on a graph $G$ by two players, called Dominator and Staller, who alternately choose a vertex that has not been played so far. Dominator wins the game if his moves form a dominating set. Staller wins if she plays all vertices from a closed neighborhood of a vertex $v \in V(G)$. Dominator's fast winning strategies were studied earlier. In this work, we concentrate on the cases when Staller has a winning strategy in the game. We introduce the invariant $\gamma'_{\rm SMB}(G)$ (resp., $\gamma_{\rm SMB}(G)$) which is the smallest integer $k$ such that, under any strategy of Dominator, Staller can win the game by playing at most $k$ vertices, if Staller (resp., Dominator) plays first on the graph $G$. We prove some basic properties of $\gamma_{\rm SMB}(G)$ and $\gamma'_{\rm SMB}(G)$ and study the parameters' changes under some operators as taking the disjoint union of graphs or deleting a cut vertex. We show that the inequality $\delta(G)+1 \le \gamma'_{\rm SMB}(G) \le \gamma_{\rm SMB}(G)$ always holds and that for every three integers $r,s,t$ with $2\le r\le s\le t$, there exists a graph $G$ such that$\delta(G)+1 = r$, $\gamma'_{\rm SMB}(G) = s$, and $\gamma_{\rm SMB}(G) = t$. We prove exact formulas for $\gamma'_{\rm SMB}(G)$ where $G$ is a path, or it is a tadpole graph which is obtained from the disjoint union of a cycle and a path by adding one edge between them.

Jezik:Angleški jezik
Ključne besede:domination game, Maker–Breaker game, winning number, Maker-Breaker domination game, closed neighborhood hypergraph
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FMF - Fakulteta za matematiko in fiziko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Datum objave:01.02.2024
Leto izida:2024
Št. strani:Str. 10-22
Številčenje:Vol. 344
PID:20.500.12556/RUL-163171 Povezava se odpre v novem oknu
UDK:519.17
ISSN pri članku:0166-218X
DOI:10.1016/j.dam.2023.11.015 Povezava se odpre v novem oknu
COBISS.SI-ID:206680323 Povezava se odpre v novem oknu
Datum objave v RUL:03.10.2024
Število ogledov:58
Število prenosov:15
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Discrete applied mathematics
Skrajšan naslov:Discrete appl. math.
Založnik:Elsevier
ISSN:0166-218X
COBISS.SI-ID:25342464 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Projekti

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:N1-0108
Naslov:Prenos naboja v grafovski dominaciji

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P1-0297
Naslov:Teorija grafov

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj