Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Explainable machine learning for predicting diarrhetic shellfish poisoning events in the Adriatic Sea using long-term monitoring data
ID
Marzidovšek, Martin
(
Avtor
),
ID
Francé, Janja
(
Avtor
),
ID
Podpečan, Vid
(
Avtor
),
ID
Grebenc, Stanka
(
Avtor
),
ID
Dolenc, Jožica
(
Avtor
),
ID
Mozetič, Patricija
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(4,25 MB)
MD5: F809CBDC9092F1F60C81A369E854ECB0
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S1568988324001616
Galerija slik
Izvleček
In this study, explainable machine learning techniques are applied to predict the toxicity of mussels in the Gulf of Trieste (Adriatic Sea) caused by harmful algal blooms. By analysing a newly created 28-year dataset containing records of toxic phytoplankton in mussel farming areas and diarrhetic shellfish toxins in mussels (Mytilus galloprovincialis), we train and evaluate the performance of machine learning (ML) models to accurately predict diarrhetic shellfish poisoning (DSP) events. Based on the F1 score, the random forest model provided the best prediction of toxicity results at which the harvesting of mussels is stopped according to EU regulations. Explainability methods such as permutation importance and Shapley Additive Explanations (SHAP) identified key species (Dinophysis fortii and D. caudata) and environmental factors (salinity, river discharge and precipitation) as the best predictors of DSP toxins above regulatory limits. These findings are important for improving early warning systems, which until now were based solely on empirically defined alert abundances of DSP species. They provide experts, aquaculture practitioners, and authorities with additional information to make informed risk management decisions.
Jezik:
Angleški jezik
Ključne besede:
harmful algal blooms
,
DSP toxins
,
machine learning
,
explainable artificial intelligence
,
aquaculture
,
marine ecology
,
Adriatic Sea
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
VF - Veterinarska fakulteta
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2024
Št. strani:
14 str.
Številčenje:
Vol. 139, art. 102728
PID:
20.500.12556/RUL-163124
UDK:
636.09:616
ISSN pri članku:
1878-1470
DOI:
10.1016/j.hal.2024.102728
COBISS.SI-ID:
209760771
Datum objave v RUL:
02.10.2024
Število ogledov:
97
Število prenosov:
74
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Harmful algae
Založnik:
Elsevier
ISSN:
1878-1470
COBISS.SI-ID:
175350787
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Projekti
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
The Administration of the Republic of Slovenia for Food Safety, Veterinary Sector and Plant Protection
Naslov:
National monitoring program for toxic phytoplankton and marine biotoxins in shellfish growing areas in the Slovenian Sea
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P1-0237
Naslov:
Raziskave obalnega morja
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P4-0092
Naslov:
Zdravje živali, okolje in varna hrana
Financer:
ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:
P2-0103
Naslov:
Tehnologije znanja
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj