Taylorjev mehur je ena od manifestacij dvofaznega čepastega toka v cevi, ki se pojavlja v številnih industrijskih procesih in napravah. Sestavljajo ga veliki plinski mehurji, ločeni drug od drugega s čepi kapljevine. Doktorsko delo se osredotoča na obnašanje Taylorjevega mehurja v protitoku kapljevine, pri čemer smo uporabili numerične simulacije visoke ločljivosti in najsodobnejše eksperimentalne metode za podrobno analizo hitrostnih polj, dinamike medfazne površine in razpada mehurja. Z uporabo hitrotekoče kamere je bila dinamika Taylorjevih mehurjev v mešanicah zrak-voda natančno raziskana v dveh različnih režimih – prehodnem režimu toka z Reynoldsovim številom $Re = 1400$ in turbulentnem toku z $Re = 5600$. Študija se je osredotočila na mehurje dolžine $2-10D_h$, pri katerih je vzgon uravnotežen z vztrajnostnim uporom v padajočem turbulentnem toku. Z razvojem algoritma za prepoznavo medfazne površine na posnetih slikah je analiza identificirala asimetrične oblike mehurjev, podobne obliki hitrih vlakov. To je pomembna ugotovitev, ki je pokazala tudi prisotnost majhnih vzbujenih valov vzdolž površine mehurjev, ki smo jim z omenjenim algoritmom sledili z visoko občutljivostjo. Ti valovi so pokazali korelirana gibanja po površini mehurja, kar je dodalo novo razumevanje o obnašanju tovrstnih tokov. Pri uporabi orodja za računsko dinamiko tekočin OpenFOAM je bila implementirana Runge-Kutta shema časovne integracije visokega reda v kombinaciji z metodo VOF in geometrično rekonstrukcijo medfazne površine. Študija se je osredotočila na režim prehodnega toka s kapljevinastim $Re=1400$ ter primerjala algebraične in geometrične tehnike zajemanja medfazne površine. Rezultati so pokazali prednost geometričnega zajemanja pri simulacijah razpada Taylorjevega mehurja. Novo odkritje je tudi pojav sekundarnega vrtinca za Taylorjevim mehurjem, v t.i. sledi Taylorjevega mehurja, ki je še posebej opazen pri gostejših ločljivostih mreže, potrdili pa smo ga tudi z eksperimenti. Doktorsko delo prispeva k področju jedrske tehnike in dinamike tekočin s celovitejšim razumevanjem obnašanja čepastih tokov v protitočnih turbulentnih tokovih, ki se lahko pojavijo tudi v primarni zanki tlačnovodnih jedrskih elektrarn. Kombinacija eksperimentalnov in numeričnih simulacij ponuja bolj celostni pogled ter utira pot izboljšanemu načrtovanju na različnih inženirskih področjih, kjer se pojavljajo tovrstni pretočni pojavi.
|