The role of hydrogen technologies in the electricity supply focuses on the use of hydrogen technologies for the conversion and storage of electrical energy. The research stems from the need to balance the production and consumption of electrical energy, especially with renewable sources, where production depends on season, time in day and weather. The work is part of a broader project dealing with the optimal integration of hydrogen technologies into the electrical energy system and market.
The significance of hydrogen technologies for the electrical energy system lies in balancing the production and consumption of electrical energy and reducing dependence on traditional energy sources. The key components of the hydrogen system are the electrolyser, hydrogen storage, and fuel cell. The physical principles of operation of each component, including mathematical models, are described in detail.
The developed digital twin of the hydrogen system enables the conversion of electrical energy into hydrogen through water electrolysis, hydrogen storage, and conversion back to electrical energy using a fuel cell. The model is based on the physical laws of individual elements and was implemented in Matlab and then transferred to programmable logic controller Siemens Simatic for real-time operation, using the TIA Portal for programming. Numerical integration methods, specifically the Euler method, were used for simulation.
Experimental tests included manual calculation of hydrogen flow and verification of system operation in various intervals. The results showed consistency between the model and theory, contributing to the understanding of the role of hydrogen technologies in the electrical energy system.
|