izpis_h1_title_alt

Generiranje anonimiziranih statističnih vzorcev iz zdravstvenih podatkovnih zbirk
ID Arsovski, Martin (Avtor), ID Brodnik, Andrej (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Žibert, Janez (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (549,53 KB)
MD5: 06C545B7C1DB340F87409E8E31EEFE70

Izvleček
Dandanes lahko rečemo, da je precej priljubljeno, hkrati pa lahko zelo koristno, proučevanje podatkov, povezanih z medicinskimi preiskavami med bolniki. Proučevanje takšnih podatkov je lahko zelo koristno v sodobni medicini in lahko tudi izboljša kakovost zdravstvenih storitev. Danes imajo verjetno vse bolnišnice za svoje bolnike zdravstvene podatkovne zbirke, ki vključujejo veliko zasebnih podatkov o pacientih, zdravstvenih obravnavah, posegih, laboratorijskih izvidih ipd. Za uporabo teh podatkov za izvajanje medicinskih raziskav in analiz pa bi morali imeti dovoljenje bolnišnic in drugih institucij, kar ljudem, ki se s tem ukvarjajo, predstavlja težavo. Poleg tega lahko takšne analize včasih stanejo veliko denarja in časa. Podatke je treba še anonimizirati in pripraviti tako, da ohranjajo statistične lastnosti osnovne podatkovne zbirke. V naši magistrski nalogi bomo pregledali in ustrezno predstavili več metod generiranja sintetičnih podatkov na podlagi dejanskih podatkov. Bomo izbrali in implementirali nekaj najboljših metod iz literature. Implementirane metode bomo uporabili za generiranje sintetičnih podatkov. Evaluacija postopkov generiranja vzorcev bo izvedena tako, da se bodo primerjale statistične lastnosti vzorca s populacijskimi lastnostmi. Na podlagi evaluacije bomo ocenili, katere metode generiranja sintetičnih podatkov so pri tem najuspešnejše.

Jezik:Slovenski jezik
Ključne besede:vzorčenje populacije, anonimizacija podatkov, zdravstvena informatika, statistika, sintetični podatki
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Leto izida:2023
PID:20.500.12556/RUL-153150 Povezava se odpre v novem oknu
COBISS.SI-ID:178836995 Povezava se odpre v novem oknu
Datum objave v RUL:19.12.2023
Število ogledov:585
Število prenosov:83
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Generation of anonymized statistical samples from health databases
Izvleček:
Nowadays, we can say that it is quite popular, and at the same time it can be very useful, to study data related to medical examinations among patients. Studying such data can be very useful in modern medicine and can also improve the quality of health services. Today, probably all hospitals have medical databases for their patients, which include a lot of private data about patients, medical treatments, interventions, laboratory results, etc. However, in order to use this data to conduct medical research and analysis, you would have to get permission from hospitals and other institutions, which presents a problem for the people involved. In addition, such analyzes can sometimes cost a lot of money and time. The data must be anonymized and prepared in such a way that they preserve the statistical properties of the basic database. In our master's thesis, we will review and adequately present several methods of generating synthetic data based on real data. Based on the review, we will select some of the best methods from the literature and implement them. We will use the implemented methods to generate synthetic data. The evaluation of the sample generation procedures will be carried out by comparing the statistical properties of the sample with the population properties. Based on the evaluation, we will assess which methods of generating synthetic data are the most successful.

Ključne besede:population sampling, data anonymization, health informatics, statistics, synthetic data

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj