izpis_h1_title_alt

Klasifikacija nevronskih korelatov procesiranja napak med kompleksno motorično nalogo : magistrsko delo
ID Kroflič, Niko (Avtor), ID Babič, Jan (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (13,69 MB)
MD5: 273A3CEA3388C77D4A6020DD2B92147A

Izvleček
Sposobnost prepoznave in prilagajanja napakam je temeljni vidik kognitivnega nadzora in je ključnega pomena za preživetje. V kontekstu motoričnih nalog lahko napake razvrstimo v dve glavni kategoriji, in sicer med izvršilne napake in napake izida, za katere se verjame, da izhajajo iz različnih nevronskih mehanizmov. Naša študija nadgrajuje prejšnje raziskave s preverjanjem možnosti klasifikacije teh napak pri kompleksni motorični nalogi in prav tako preverja možnosti napovedovanja napak izida. V okviru paradigme vidnomotorične rotacije smo zbrali elektroencefalografske podatke med izvedbo kompleksne motorične naloge, ki je vključevala ciljno usmerjeno seganje z roko. Za testiranje razlikovanja med napakami smo uporabili štiri modele strojnega učenja za klasifikacijo nevronskih korelatov procesiranja napak, pri čemer smo se najprej osredotočili na razlikovanje med izvršilne napake in napake izida od signalov brez napak in nadalje med njimi samimi. Potenciali, povezani z dogodki, kažejo različne morfološke variacije med izvršilnimi napakami in napakami izida. Naša analiza kaže, da je mogoče obe vrsti napak razlikovati od signala brez napak, pri čemer smo dosegli točnost do 70 \%, odvisno od uporabljenega modela. Podobno je razlikovanje med napakami izida in izvšilnimi napakami bilo možno z visoko stopnjo točnosti, do 90 \%. To razlikovanje je možno z uporabo podatkov iz izbranega nabora frontocentralnih in parietalnih elektrod. Poleg tega prikazujemo izvedljivost napovedovanja izida naloge bodisi z natančno klasifikacijo izvšilnih napak ali s kratkim segmentom signala, ki predhaja napakam izida. Ta doslednost rezultatov zajema tako znotrajsubjektne kot medsubjektne eksperimentalne paradigme, čeprav z nižjo točnostjo v medsubjektni paradigmi. Ponujamo dokaze za dve različni vrsti napak, ki sta modulirani glede na različne razpoložljive povratne informacije in ki ju je mogoče uspešno klasificirati v kompleksni motorični nalogi. Poleg tega naša raziskava podpira potencialni razvoj sistemov, kjer potenciali, povezani z napako, zagotavljajo povratne informacije v realnem času, kar omogoča učinkovitejšo interakcijo med človekom in strojem. Te klasifikacije bi lahko ponudile povratne informacije v realnem času algoritmom za dekodiranje, kar izboljšuje prilagodljivost in omogoča sposobnost učenja v sistemih, kjer je natančno dekodiranje uporabniških namer bistveno.

Jezik:Angleški jezik
Ključne besede:procesiranje napak, negativnost povezana z napako, negativnost povezana s povratnimi informacijami, vidnomotorična rotacija, vmesniki med možgani in računalniki, elektroencefalografija, klasifikacija
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:PEF - Pedagoška fakulteta
Kraj izida:Ljubljana
Založnik:N. Kroflič
Leto izida:2023
Št. strani:62 str.
PID:20.500.12556/RUL-152947 Povezava se odpre v novem oknu
UDK:165.194(043.2)
DOI:20.500.12556/RUL-152947 Povezava se odpre v novem oknu
COBISS.SI-ID:177828611 Povezava se odpre v novem oknu
Datum objave v RUL:13.12.2023
Število ogledov:479
Število prenosov:30
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Classification of Neural Correlates of Error Processing in a Complex Motor Task
Izvleček:
The ability to recognize and adapt to errors is a fundamental aspect of cognitive control and is crucial for survival. In the context of motor tasks, errors can be classified into two main categories, namely Execution errors and Outcome errors, which are believed to arise from different neural mechanisms. Our study builds on previous research by testing the feasibility of classifying these errors in a complex motor task, furthermore, we also evaluate the possibilities of predicting outcome errors. We recorded electroencephalography data during a complex reaching arm task in a visuomotor rotation paradigm. To test the differentiability of these errors, we used four machine learning models to classify the neural correlates of error processing, focusing first on differentiating Execution errors and Outcome errors from no error signal and further differentiating between them. Event-related potentials exhibit distinct morphological variations between Outcome and Execution errors. Our analysis reveals that both types of errors can be significantly differentiated from a no-error signal, achieving accuracies up to 70 \% based on the model employed. Similarly, differentiating between outcome and execution errors yielded a high accuracy rate of up to 90 \%. Importantly, this differentiation is achievable by using data from a selective set of frontocentral and parietal electrodes. Furthermore, we demonstrate the feasibility of outcome prediction through either accurate classification of Execution errors or by a brief signal segment preceding outcome errors. This consistency in results spans both within-subject and cross-subject experimental paradigms, although with lower accuracies in the cross-subject paradigm. We provide evidence for two distinct types of errors, modulated by different available feedback, which can be successfully classified in a complex motor task. Moreover, our research supports the potential development of human-in-the-loop systems, where ErrPs furnish real-time feedback, enabling more efficient and effective interaction between humans and machines. These classifications could offer real-time feedback to decoding algorithms, enhancing adaptability and learning capabilities development with potential applications in brain-computer interfaces and human-computer interaction, where precise user intention decoding is essential.

Ključne besede:error processing, error-related negativity, feedback-related negativity, visuomotor-rotation, brain-computer interface, electroencephalography, classification

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj