Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Combining color and spatial image features for unsupervised image segmentation with mixture modelling and spectral clustering
ID
Panić, Branislav
(
Avtor
),
ID
Nagode, Marko
(
Avtor
),
ID
Klemenc, Jernej
(
Avtor
),
ID
Oman, Simon
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(1,02 MB)
MD5: 5522C96EE3278F869EAA424902883B34
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/2227-7390/11/23/4800
Galerija slik
Izvleček
The demand for accurate and reliable unsupervised image segmentation methods is high. Regardless of whether we are faced with a problem for which we do not have a usable training dataset, or whether it is not possible to obtain one, we still need to be able to extract the desired information from images. In such cases, we are usually gently pushed towards the best possible clustering method, as it is often more robust than simple traditional image processing methods. We investigate the usefulness of combining two clustering methods for unsupervised image segmentation. We use the mixture models to extract the color and spatial image features based on the obtained output segments. Then we construct a similarity matrix (adjacency matrix) based on these features to perform spectral clustering. In between, we propose a label noise correction using Markov random fields. We investigate the usefulness of our method on many hand-crafted images of different objects with different shapes, colorization, and noise. Compared to other clustering methods, our proposal performs better, with 10% higher accuracy. Compared to state-of-the-art supervised image segmentation methods based on deep convolutional neural networks, our proposal proves to be competitive.
Jezik:
Angleški jezik
Ključne besede:
spectral clustering
,
mixture models
,
color features
,
spatial features
,
image segmentation
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2023
Št. strani:
22 str.
Številčenje:
Vol. 11, iss. 23, art. 4800
PID:
20.500.12556/RUL-152775
UDK:
543.42
ISSN pri članku:
2227-7390
DOI:
10.3390/math11234800
COBISS.SI-ID:
175149571
Datum objave v RUL:
06.12.2023
Število ogledov:
632
Število prenosov:
31
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Mathematics
Skrajšan naslov:
Mathematics
Založnik:
MDPI AG
ISSN:
2227-7390
COBISS.SI-ID:
523267865
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
spektralno grozdenje
,
mešani modeli
,
barvne lastnosti
,
pozicijske lastnosti
,
segmentacija slik
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0182
Naslov:
Razvojna vrednotenja
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj