Cold atmospheric plasma (CAP) is a near-room temperature ionized gas that is widely used in biomedicine. CAP cause physicochemical effects, as various processes take place during the generation of CAP, such as reactive compounds, neutral particles, electromagnetic fields and UV radiation. It is well established that CAP causes the formation of stress granules via the eIF2α-phosphorylation dependent pathway. However, it is unknown which of the integrated stress response related kinases is responsible for the phosphorylation of eIF2α. We can assume that CAP is responsible for oxidative stress due to the generation of reactive oxygen and nitrogen species by the application of CAP. Quercetin is a known antioxidant, so we assumed that quercetin may inhibit the activation of heme-regulated inhibitor kinase, which is activated during oxidative stress. We used the cell line SH-SY5Y Flp-In mScarletI-G3BP1-Myc, in which the fluorescent protein mScarletI is fused to one of the core proteins of stress granules, G3BP1. The source of CAP was a plasma jet with constant argon flow. We demonstrated that quercetin significantly reduced the number of cells with stress granules when incubated for one hour before treatment with CAP. Quercetin also acts on strength of stress stimuli caused by CAP and on affects stress granule morphology. We did not detect any effect of quercetin on eIF2α phosphorylation.
|