Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Eulerjev problem 36 častnikov : delo diplomskega seminarja
ID
Kranjec, Katja
(
Avtor
),
ID
Vavpetič, Aleš
(
Mentor
)
Več o mentorju...
PDF - Predstavitvena datoteka,
prenos
(742,38 KB)
MD5: 4AE22631D3338AB38C4CED3E98CA9391
Galerija slik
Izvleček
Latinski kvadrat reda $n$ je tabela velikosti $n \times n$, sestavljena iz elementov množice moči $n$, v kateri je vsak od elementov zastopan v vsaki vrstici in v vsakem stolpcu. Dva latinska kvadrata reda $n$ sta ortogonalna, če njuna superpozicija tvori same različne urejene pare. Nastalemu kvadratu rečemo grško-latinski kvadrat reda $n$. Eulerjev problem $36$ častnikov, ki se sprašuje, ali je možno razporediti $36$ častnikov iz šestih različnih regimentov in šestih različnih činov, v formacijo $6 \times 6$, tako da je v vsaki vrsti in vsaki koloni zastopan vsak regiment in vsak čin, je potem enak vprašanju obstoja grško-latinskega kvadrata reda šest. Tega lahko prevedemo v vprašanje obstoja transverzalnega načrta $TD(4, 6)$, za katerega lažje dokažemo, da ne obstaja. Grško-latinske kvadrate lihih redov znamo enostavno konstruirati, prav tako poznamo kvadrata reda štiri in osem. Dejstvo, da iz dveh grško-latinskih kvadratov redov $n_1$ in $n_2$ dobimo grško-latinski kvadrat reda $n_1 \times n_2$, pa nam pomaga konstruirati še kvadrate višjih redov oblike $n \not\equiv 2\pmod{4}$. Euler je domneval, da grško-latinski kvadrati preostalih redov ne obstajajo, vendar je bila njegova domneva ovržena skoraj dvesto let kasneje. Dva načina konstrukcije takih kvadratov sta s pomočjo ortogonalnih tabel in Wilsonove konstrukcije.
Jezik:
Slovenski jezik
Ključne besede:
ortogonalni latinski kvadrati
,
grško-latinski kvadrati
,
ortogonalne tabele
,
transverzalni načrti
Vrsta gradiva:
Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Tipologija:
2.11 - Diplomsko delo
Organizacija:
FMF - Fakulteta za matematiko in fiziko
Leto izida:
2023
PID:
20.500.12556/RUL-150831
UDK:
519.1
COBISS.SI-ID:
165831171
Datum objave v RUL:
24.09.2023
Število ogledov:
1157
Število prenosov:
57
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Sekundarni jezik
Jezik:
Angleški jezik
Naslov:
Euler’s 36 Officers Problem
Izvleček:
A Latin square of order $n$ is an $n \times n$ array of elements from a set of size $n$ in which each element occurs in every row and every column. Two Latin squares of order $n$ are orthogonal if their superposition yields unique ordered pairs. The resulting square is then called a Graeco-Latin square of order $n$. Euler’s $36$ Officers Problem which poses a question if it is possible to arrange $36$ officers of six different regiments and of six different ranks in a formation $6 \times 6$ where each row and each file contains one officer of each regiment and one of each rank, is equal to the question of existence of Graeco-Latin square of order six. In design theory this question translates to the question of existence of a transversal design $TD(4, 6)$ the non-existence of which is easier to prove. Graeco-Latin squares of odd orders are easy to construct as well as squares of orders four and eight. The fact that a Graeco-Latin square of order $n_1 \times n_2$ can be constructed from two Graeco-Latin squares of orders $n_1$ and $n_2$ helps us construct squares of higher orders $n$ where $n \not\equiv 2\pmod{4}$. Euler conjectured that there exist no Graeco-Latin squares of other orders which was disproven almost two hundred years later. Two ways of constructing such squares are using orthogonal tables and Wilson’s construction.
Ključne besede:
orthogonal latin squares
,
Graeco-Latin squares
,
orthogonal arrays
,
transversal designs
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj