Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Development of in silico classification models for binding affinity to the glucocorticoid receptor
ID
Stanojević, Mark
(
Avtor
),
ID
Vračko, Marjan
(
Avtor
),
ID
Sollner Dolenc, Marija
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,95 MB)
MD5: 2E3668EEC65830424B8CE9FD63ECA9DD
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0045653523014145
Galerija slik
Izvleček
The endocrine disrupting properties of chemicals acting through the glucocorticoid receptor (GR) have attracted considerable interest. Since there are few data for most chemicals on their endocrine properties in silico approaches seem to be the most appropriate tool for screening and prioritizing chemicals for planning further experiments. In this work, we developed classification models for binding affinity to the glucocorticoid receptor using the counterpropagation artificial neural network method. We considered two series of 142 and 182 compounds and their binding affinity to the glucocorticoid receptor as agonists and antagonists, respectively. The compounds belong to different chemical classes. The compounds were represented by a set of descriptors calculated with the DRAGON program. The clustering structure of sets was studied with standard principal component method. A weak separation between binders and non-binders was found. Another classification model was developed using the counterpropagation artificial neural network method (CPANN). The final classification models developed were well balanced and showed a high level of accuracy, with 85.7% of GR agonist and 78.9% of GR antagonist correctly assigned in leave-one-out cross-validation.
Jezik:
Angleški jezik
Ključne besede:
endocrine disruptions
,
binding to glucocorticoid receptor
,
in silico classification
,
counterpropagation artificial neural networks
,
DRAGON descriptors
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FFA - Fakulteta za farmacijo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2023
Št. strani:
6 str.
Številčenje:
Vol. 336, art. 139147
PID:
20.500.12556/RUL-148284
UDK:
612.43:616.4
ISSN pri članku:
0045-6535
DOI:
10.1016/j.chemosphere.2023.139147
COBISS.SI-ID:
155559171
Datum objave v RUL:
09.08.2023
Število ogledov:
893
Število prenosov:
83
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Chemosphere
Skrajšan naslov:
Chemosphere
Založnik:
Elsevier
ISSN:
0045-6535
COBISS.SI-ID:
25213696
Licence
Licenca:
CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:
Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
endokrine motnje
,
vezave na glukokortikoidni receptor
,
klasifikacija in silico
,
umetne nevronske mreže
,
deskriptorji DRAGON
,
hormonski motilci
,
endokrinologija
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P1-0017
Naslov:
Modeliranje kemijskih procesov in lastnosti spojin
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P1-0208
Naslov:
Farmacevtska kemija: načrtovanje, sinteza in vrednotenje učinkovin
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Republic of Slovenia, Chemicals Office
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj