Baking in an oven is a popular food preparation method, where the results depend on numerous variables that are difficult to control precisely. In this master's thesis, we present a computer vision system for non-destructive determination of the baking state of cookies in an oven - whether the cookies are raw or their doneness is low, meduim, or high. The goal of the system is to assist the user of a household oven, particularly a home cook, in achieving optimal baking results. To simulate the decision-making process of a home cook, we used a model that makes decisions based on the time elapsed since the start of baking. This model served as a baseline for evaluating the computer vision system, which consists of an oven equipped with a built-in digital camera capturing images of the cookies during baking, and a model for determining the baking state based on the captured images.
We tested models that make decisions based on a single image and models that make decisions based on a sequence of images. We found that modeling based on a single image did not improve the results compared to a home cook. On the other hand, with ConvLSTM models that make decisions based on a sequence of images, we achieved improvement compared to the amateur cook. This indicates that information about the dynamics of baking is crucial for successful determination of the baking state. Although further improvements would be needed for general use, we conclude that a computer vision system with models that capture the dynamics of baking shows promise in assisting home cooks in improving cookie baking results.
|