izpis_h1_title_alt

Razvoj in validacija populacijskega farmakokinetičnega modela za optimizacijo odmerjanja gentamicina pri otrocih
ID Črček, Mateja (Avtor), ID Kerec Kos, Mojca (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Grosek, Štefan (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (7,01 MB)
MD5: 5FE1473E4EC120F26178C51271E85AB7

Izvleček
Pri optimizaciji odmerjanja zdravilnih učinkovin (ZU) pri pediatrični populaciji so lahko v pomoč populacijski farmakokinetični (FK) modeli, s katerimi ocenimo populacijske vrednosti FK parametrov na osnovi podatkov vseh pacientov v raziskavi ter individualne vrednosti FK parametrov na osnovi podatkov in meritev pri posameznem pacientu. V klinični praksi je bolj smotrna uporaba preprostejših modelov, enotnih za celotno pediatrično populacijo, saj je kompleksnejše ali za vsako starostno skupino ločene modele težje uporabljati in lahko pogosteje pride do napak pri njihovi uporabi. V doktorski nalogi smo najprej identificirali študije, v katerih so avtorji razvili populacijske FK modele gentamicina pri pediatrični populaciji ter vpliv najpogosteje preučevanih sočasnih spremenljivk na FK parametre gentamicina. V naslednjem koraku smo retrospektivno zbrali in analizirali podatke o terapevtskem spremljanju koncentracij gentamicina pri pediatrični populaciji. V nadaljevanju smo po literaturi izbrane populacijske FK modele gentamicina optimizirali z metodo predhodnega vedenja in uporabo opcije $PRIOR. Za vsak model smo ovrednotili točnost in natančnost napovedovanja koncentracij gentamicina na naših podatkih, ter najboljši model uporabili za testiranje vpliva nekaterih manj preučevanih sočasnih spremenljivk na očistek (CL) gentamicina. V sistematičnem pregledu literature smo podrobneje obravnavali 17 študij, kjer so avtorji uporabili modeliranje s programskim paketom NONMEM. Na podlagi zbranih podatkov smo oblikovali tudi priporočila glede odmerjanja gentamicina za vsako od starostnih skupin znotraj pediatrične populacije. Predlagan odmerni interval za izjemno nedonošene novorojence je bil 48h, za nedonošene 36h, za donošene novorojence in dojenčke pa 36h ali 24h. V primerjavi s prvotnimi odmerki so bili na osnovi razvitih modelov pri nedonošenih novorojencih in dojenčkih predlagani nižji odmerki, primerljivi pri donošenih novorojencih in dojenčkih ter višji pri otrocih. Poleg tega smo identificirali redkeje proučevane spremenljivke, kot so telesna masa brez maščob (FFM), sočasno zdravljenje z drugimi ZU, telesna temperatura in kritičnost obolenja, za katere se nakazuje vpliv na FK gentamicina, in bi jih bilo smiselno dodatno preveriti v nadaljnjih študijah. V retrospektivno klinično raziskavo smo vključili pediatrične paciente, ki so se zdravili z gentamicinom in za katere smo imeli na voljo vsaj eno meritev plazemske koncentracije gentamicina. Terapevtske koncentracije gentamicina so bile pri novorojencih značilno pogosteje izven terapevtskega območja kot pri starejših starostnih skupinah. Za redkeje proučevane spremenljivke (kritičnost obolenja, hidracija organizma, sočasno zdravljenje z drugimi ZU idr.) smo ocenili povezavo z ustreznostjo minimalne koncentracije gentamicina (cmin). Delež neustreznih cmin je bil značilno višji pri kritično bolnih ter pri pacientih, ki so prejemali sočasno terapijo z vankomicinom in dopaminom, medtem ko značilne povezave s hidracijo organizma nismo dokazali. Ker so bili retrospektivno zbrani podatki precej skopi glede števila meritev koncentracij gentamicina, smo si pri razvoju populacijskega FK modela pomagali z literaturnimi modeli. Izbrali smo sedem literaturnih populacijskih FK modelov gentamicina razvitih na celotni oziroma čim širši pediatrični populaciji. Modele smo optimizirali z metodo predhodnega vedenja in uporabo opcije $PRIOR v sklopu programskega okolja NONMEM. V splošnem so optimizirani modeli boljše opisali naše podatke kot literaturni. Pričakovano sta bili točnost in natančnost manjši za apriori napovedi, ki temeljijo le na podlagi spremenljivk, kot za apostriori napovedi, ki upoštevajo tudi posameznikove meritve koncentracij gentamicina. Na podlagi vizualnega pregleda ter ocene točnosti in natančnosti se je kot najprimernejši model za napovedovanje koncentracij na naših podatkih izkazal optimiziran model od Wang 2019 (izbran populacijski FK model). Z izbranim populacijskim FK modelom smo ocenili točnost in natančnost napovedovanja koncentracij gentamicina, če odmerjamo brez modela ali z modelom tako, da vključimo samo eno ali več koncentracij. Pokazali smo, da napovedovanje koncentracij gentamicina značilno izboljšamo, če odmerjamo na podlagi modela in če za oceno parametrov uporabimo vse meritve koncentracij gentamicina, ki jih imamo na voljo za posameznega pacienta. Z izbranim modelom smo ocenili tudi razliko v FK gentamicina pri intenzivno (kritično bolnih) oz. neintenzivno (nekritično bolnih) zdravljenih otrocih. Pri kritično bolnih pacientih so bile vrednosti CL in Vss v vseh starostnih skupinah nižje kot pri nekritično bolnih, koeficient variabilnosti med kritično in nekritično bolnimi otroci pa se ni značilno razlikoval. Glede na ugotovitev, da obstajajo razlike v FK med kritično in nekritično bolnimi pacienti, smo za vsako od starostnih skupin s simulacijami preverili, kako se te razlike odražajo na plazemskem koncentracijskem profilu gentamicina in kakšna je verjetnost za dosego cmin gentamicina ?1 mg/L po prvem odmerku in v stacionarnem stanju pri različnih odmernih intervalih. Pri kritično bolnih nedonošenih in donošenih novorojencih, dojenčkih in malčkih so bile zaradi nižjega CL in Vss plazemske koncentracije gentamicina višje, verjetnost za dosego cmin ?1 mg/L pa nižja, kar nakazuje smotrnost uporabe daljših odmernih intervalov pri kritično bolnih otrocih. Na koncu smo preverili, če katere od sočasnih spremenljivk, ki so bile do sedaj redkeje proučevane in smo jih ovrednotili v naši populaciji bolnikov, pomembno vplivajo na CL gentamicina in tiste z značilnim vplivom (sočasno zdravljenje z dopaminom, tekočinska bilanca vrednotena kot dnevni delež akumulirane tekočine, kritičnost obolenja ocenjena s pomočjo lestvice PELOD 2 in številom odpovedujočih organov ter zdravljenje s terapevtsko inducirano hipotermijo) vključili v izbran model. Z upoštevanjem teh sočasnih spremenljivk smo dodatno izboljšali napovedno moč izbranega modela, a je model hkrati postal precej kompleksen in bi ga bilo pred uporabo v rutinski klinični praksi potrebno še dodatno preveriti. Kljub temu pa na podlagi dobljenih rezultatov sklepamo, da je namesto razvoja novega FK modela eksterna validacija literaturnih modelov, prilagojenih na proučevano populacijo, smotrna rešitev.

Jezik:Slovenski jezik
Ključne besede:gentamicin, pediatrična populacija, kritičnost obolenja, populacijska farmakokinetika, modeliranje, NONMEM, metoda predhodnega vedenja
Vrsta gradiva:Doktorsko delo/naloga
Organizacija:FFA - Fakulteta za farmacijo
Leto izida:2023
PID:20.500.12556/RUL-146828 Povezava se odpre v novem oknu
Datum objave v RUL:15.06.2023
Število ogledov:610
Število prenosov:63
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Development and validation of a population pharmacokinetic model of gentamycine for dosing optimisation in children
Izvleček:
When optimizing the dosing of drugs in the paediatric population, population pharmacokinetic (PK) models can be helpful. These models estimate population values of PK parameters based on data from all patients in the study and individual values of PK parameters based on data and measurements from each patient. In clinical practice, it is more practical to use simpler models that are common for the entire paediatric population because using more complex models or models separated based on age groups can be more difficult to use and may frequently result in errors when using them. In the doctoral dissertation, we first identified studies in which authors developed population PK models of gentamicin in the paediatric population and the impact of the most commonly studied covariates on gentamicin PK parameters. In the next step, we retrospectively collected and analyzed data on therapeutic monitoring of gentamicin concentrations in the paediatric population. We then optimized selected literature population PK models of gentamicin using $PRIOR approach. For each model, we evaluated the accuracy and precision of predicting gentamicin concentrations in our data and used the best model to test the impact of some less studied covariates on gentamicin clearance (CL). In a systematic literature review, we examined 17 studies in detail where authors used modeling with the NONMEM software package. Based on the collected data, we also formulated recommendations regarding gentamicin dosing for each age group within the paediatric population. The proposed dosing interval for extremely premature newborns was 48 hours, for premature newborns 36 hours, and for full-term newborns and infants 36 or 24 hours. Compared to initial doses, lower doses were proposed based on the developed models for premature newborns and infants, comparable doses for full-term newborns and infants, and higher doses for children. In addition, we identified less frequently studied covariates such as fat-free mass (FFM), concomitant therapy with other drugs, body temperature, and critical illness, which suggest an impact on gentamicin PK and should be further investigated. In a retrospective clinical study, we included paediatric patients who were treated with gentamicin and for whom at least one measurement of plasma gentamicin concentration was available. Therapeutic gentamicin concentrations were significantly more frequently outside the therapeutic range in newborns than in older age groups. For less frequently studied covariates (critical illness, fluid balance, concomitant therapy with other drugs, etc.), we assessed their correlation with the appropriateness of the minimum gentamicin concentration (cmin). The proportion of inadequate cmin was significantly higher in critically ill patients and in patients receiving concomitant therapy with vancomycin and dopamine, while significant associations with organism hydration status were not demonstrated. Since the retrospectively collected data were quite sparse regarding the number of gentamicin concentration measurements, we used literature models in developing the population PK model. We selected seven literature population PK models of gentamicin developed on the entire or as broad a paediatric population as possible. We optimized the models using the $PRIOR approach within the NONMEM software environment. In general, the optimized models better described our data than the literature models. As expected, the accuracy and precision were lower for a priori predictions based solely on variables than for a posteriori predictions that also consider individual gentamicin concentration measurements. Based on visual predictive check and assessment of accuracy and precision, the optimized model by Wang 2019 (the chosen population PK model) was found to be the most suitable model for predicting gentamicin concentrations in our data. Using the selected population PK model, we evaluated the accuracy and precision of predicting gentamicin concentrations when dosing without a model or with a model in a way that includes only one or more concentrations. We demonstrated that predicting gentamicin concentrations is significantly improved when dosing based on a model and when using all available gentamicin concentration measurements for an individual patient to estimate parameters. We also evaluated the difference in gentamicin PK between intensively (critically ill) and non-intensively (non-critically ill) treated children using the selected model. The CL and Vss values in all age groups were lower in critically ill patients than in non-critically ill patients, however, the coefficient of variation between critically and non-critically ill children did not differ in any significant way. Based on the realization that there are differences in gentamicin PK between critically and non-critically ill patients, we used simulations to investigate how these differences are reflected in the plasma concentration profile of gentamicin for each age group, and what is the probability of achieving a cmin of gentamicin ⡤1 mg/L after the first dose and in steady-state at different dosing intervals. In critically ill preterm and full-term neonates, infants, and toddlers, plasma concentrations of gentamicin were higher due to lower CL and Vss, and the probability of achieving cmin ⡤1 mg/L was lower, suggesting the expedience of using longer dosing intervals in critically ill children. At the end, we checked whether any of the covariates, which have been less studied so far and were evaluated in our patient population, significantly affect gentamicin CL, and those with a significant impact (co-treatment with dopamine, fluid balance evaluated as a daily percentage of accumulated fluid, critical illness assessed using the PELOD 2 scoring system and the number of failing organs, and treatment with induced hypothermia) were included in the selected model. By taking these covariates into account, we further improved the predictive performance of the selected model, but at the same time, the model became quite complex and would require further validation before being used in routine clinical practice. Nevertheless, based on the results obtained, we conclude that instead of developing a new PK model, external validation of literature models adapted to the studied population is a reasonable solution.

Ključne besede:gentamicin, paediatric population, critical illness, population pharmacokinetics, modeling, NONMEM, prior approach

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj