izpis_h1_title_alt

Transfer and unsupervised learning : an integrated approach to concrete crack image analysis
ID Gradišar, Luka (Avtor), ID Dolenc, Matevž (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (4,25 MB)
MD5: 56EC78EE0950D4F4D437ADDE4A022B26
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2071-1050/15/4/3653 Povezava se odpre v novem oknu

Izvleček
The detection of cracks in concrete structures is crucial for the assessment of their structural integrity and safety. To this end, detection with deep neural convolutional networks has been extensively researched in recent years. Despite their success, these methods are limited in classifying concrete as cracked or non-cracked and disregard other characteristics, such as the severity of the cracks. Furthermore, the classification process can be affected by various sources of interference and noise in the images. In this paper, an integrated methodology for analysing concrete crack images is proposed using transfer and unsupervised learning. The method extracts image features using pretrained networks and groups them based on similarity using hierarchical clustering. Three pre-trained networks are used for this purpose, with Inception v3 performing the best. The clustering results show the ability to divide images into different clusters based on image characteristics. In this way, various clusters are identified, such as clusters containing images of obstruction, background debris, edges, surface roughness, as well as cracked and uncracked concrete. In addition, dimensionality reduction is used to further separate and visualise the data, making it easier to analyse clustering results and identify misclassified images. This revealed several mislabelled images in the dataset used in this study. Additionally, a correlation was found between the principal components and the severity of cracks and surface imperfections. The results of this study demonstrate the potential of unsupervised learning for analysing concrete crack image data to distinguish between noisy images and the severity of cracks, which can provide valuable information for building more accurate predictive models.

Jezik:Angleški jezik
Ključne besede:clustering, crack detection, data mining, image analysis, transfer learning, unsupervised learning
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2023
Št. strani:14 str.
Številčenje:Vol. 15, iss. 4, art. 3653
PID:20.500.12556/RUL-146416 Povezava se odpre v novem oknu
UDK:004:69
ISSN pri članku:2071-1050
DOI:10.3390/su15043653 Povezava se odpre v novem oknu
COBISS.SI-ID:142062083 Povezava se odpre v novem oknu
Datum objave v RUL:31.05.2023
Število ogledov:791
Število prenosov:119
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Sustainability
Skrajšan naslov:Sustainability
Založnik:MDPI
ISSN:2071-1050
COBISS.SI-ID:5324897 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:gručenje, odkrivanje razpok, podatkovno rudarjenje, analiza slik, učenje s prenosom znanja, nenadzorovano učenje

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Program financ.:Young researchers

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj