izpis_h1_title_alt

Predictive models for compound binding to androgen and estrogen receptors based on counter-propagation artificial neural networks
ID Stanojević, Mark (Avtor), ID Sollner Dolenc, Marija (Avtor), ID Vračko, Marjan (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (511,42 KB)
MD5: A85AD26AB39B72351CEDCE314EB84392
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2305-6304/11/6/486 Povezava se odpre v novem oknu

Izvleček
Endocrine-disrupting chemicals (EDCs) are exogenous substances that interfere with the normal function of the human endocrine system. These chemicals can affect specific nuclear receptors, such as androgen receptors (ARs) or estrogen receptors (ER) α and β, which play a crucial role in regulating complex physiological processes in humans. It is now more crucial than ever to identify EDCs and reduce exposure to them. For screening and prioritizing chemicals for further experimentation, the use of artificial neural networks (ANN), which allow the modeling of complicated, nonlinear relationships, is most appropriate. We developed six models that predict the binding of a compound to ARs, ERα, or ERβ as agonists or antagonists, using counter-propagation artificial neural networks (CPANN). Models were trained on a dataset of structurally diverse compounds, and activity data were obtained from the CompTox Chemicals Dashboard. Leave-one-out (LOO) tests were performed to validate the models. The results showed that the models had excellent performance with prediction accuracy ranging from 94% to 100%. Therefore, the models can predict the binding affinity of an unknown compound to the selected nuclear receptor based solely on its chemical structure. As such, they represent important alternatives for the safety prioritization of chemicals.

Jezik:Angleški jezik
Ključne besede:CPANN, androgen receptor, estrogen receptor, endocrine-disrupting chemicals, endocrinology
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FFA - Fakulteta za farmacijo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2023
Št. strani:15 str.
Številčenje:Vol. 11, iss. 6, art. 486
PID:20.500.12556/RUL-146397 Povezava se odpre v novem oknu
UDK:616.4+612.43
ISSN pri članku:2305-6304
DOI:10.3390/toxics11060486 Povezava se odpre v novem oknu
COBISS.SI-ID:153712131 Povezava se odpre v novem oknu
Datum objave v RUL:17.07.2023
Število ogledov:576
Število prenosov:33
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Toxics : Elektronski vir
Skrajšan naslov:Toxics
Založnik:MDPI
ISSN:2305-6304
COBISS.SI-ID:520262681 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:androgeni receptor, estrogenski receptor, endokrine motnje, protipropagacijske umetne nevronske mreže, endokrinologija, hormonski motilci

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P1-0170
Naslov:Molekulski mehanizmi uravnavanja celičnih procesov v povezavi z nekaterimi boleznimi pri človeku

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P1-0208
Naslov:Farmacevtska kemija: načrtovanje, sinteza in vrednotenje učinkovin

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj