izpis_h1_title_alt

Deep shape features for predicting future intracranial aneurysm growth
ID Bizjak, Žiga (Avtor), ID Pernuš, Franjo (Avtor), ID Špiclin, Žiga (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,23 MB)
MD5: 757C134ED394DA9D4E6C9A97FF3C42A0
URLURL - Izvorni URL, za dostop obiščite https://www.frontiersin.org/articles/10.3389/fphys.2021.644349/full Povezava se odpre v novem oknu

Izvleček
Introduction: Intracranial aneurysms (IAs) are a common vascular pathology and are associated with a risk of rupture, which is often fatal. Aneurysm growth is considered a surrogate of rupture risk; therefore, the study aimed to develop and evaluate prediction models of future artificial intelligence (AI) growth based on baseline aneurysm morphology as a computer-aided treatment decision support. Materials and methods: Follow-up CT angiography (CTA) and magnetic resonance angiography (MRA) angiograms of 39 patients with 44 IAs were classified by an expert as growing and stable (25/19). From the angiograms vascular surface meshes were extracted and the aneurysm shape was characterized by established morphologic features and novel deep shape features. The features corresponding to the baseline aneurysms were used to predict future aneurysm growth using univariate thresholding, multivariate random forest and multi-layer perceptron (MLP) learning, and deep shape learning based on the PointNet++ model. Results: The proposed deep shape feature learning method achieved an accuracy of 0.82 (sensitivity = 0.96, specificity = 0.63), while the multivariate learning and univariate thresholding methods were inferior with an accuracy of up to 0.68 and 0.63, respectively. Conclusion: High-performing classification of future growing IAs renders the proposed deep shape features learning approach as the key enabling tool to manage rupture risk in the “no treatment” paradigm of patient follow-up imaging.

Jezik:Angleški jezik
Ključne besede:intracranial aneurysm, growth prediction, vascular disease, deep learning, classification, morphological features
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2021
Št. strani:10 str.
Številčenje:Vol. 12, art. 644349
PID:20.500.12556/RUL-144659 Povezava se odpre v novem oknu
UDK:004.8:616.13-007.64
ISSN pri članku:1664-042X
DOI:10.3389/fphys.2021.644349 Povezava se odpre v novem oknu
COBISS.SI-ID:69012739 Povezava se odpre v novem oknu
Datum objave v RUL:07.03.2023
Število ogledov:493
Število prenosov:57
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Frontiers in physiology
Skrajšan naslov:Front. physiol.
Založnik:Frontiers Research Foundation
ISSN:1664-042X
COBISS.SI-ID:1218939 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:intrakranialne anevrizme, predikcija rasti, žilne bolezni, globoko učenje, klasifikacija, morfološke značilnosti

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0232
Naslov:Funkcije in tehnologije kompleksnih sistemov

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J2-8173
Naslov:Avtomatska analiza angiografskih slik za zgodnjo diagnostiko, spremljanje in zdravljenje intrakranialnih anevrizem

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J2-2500
Naslov:Analiza medicinskih slik s strojnim učenjem za napovedovanje poteka možganskih bolezni in učinkovitosti terapije

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj