izpis_h1_title_alt

Data-driven engineering design : a systematic review using scientometric approach
ID Vlah, Daria (Avtor), ID Kastrin, Andrej (Avtor), ID Povh, Janez (Avtor), ID Vukašinović, Nikola (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (7,78 MB)
MD5: C8B3980702FE15FAF583AAC2D38CB5FC
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S1474034622002324 Povezava se odpre v novem oknu

Izvleček
In the last two decades, data regarding engineering design and product development has increased rapidly. Big data exploration and mining offer numerous opportunities for engineering design; however, owing to the multitude of data sources and formats coupled with the high complexity of the design process, these techniques are yet to be utilised to the best of their full potential. In this study, a comprehensive assessment of the state-of-the-art data-driven engineering design (DDED) in the last 20 years was conducted. A scientometric approach was employed wherein first, a systematic article acquisition procedure was performed, where a dataset of 3339 articles related to engineering design and big data analytics applications were extracted from Web of Science (WoS) and Scopus. Thereafter, this dataset was reduced to a dataset of 366 articles based on concise data screening. The resulting articles were used to analyse the dynamics of research in DDED throughout the last 20 years and to detect the primary research topics related to DDED, the most influential authors, and the papers with the highest impact in the DDED domain. Furthermore, the co-occurrence network of keywords/keyphrases and co-authorship networks were constructed and analysed to reveal the interconnection of the research topics and the collaboration between the most prolific authors. Finally, an insight how big data analytics is being applied through product development activities to support decision-making in engineering design was presented.

Jezik:Angleški jezik
Ključne besede:data-driven design, engineering design, product development, big data analytics, bibliographic analysis, network analysis
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
MF - Medicinska fakulteta
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2022
Št. strani:19 str.
Številčenje:Vol. 54, art. 101774
PID:20.500.12556/RUL-142402 Povezava se odpre v novem oknu
UDK:62
ISSN pri članku:1474-0346
DOI:10.1016/j.aei.2022.101774 Povezava se odpre v novem oknu
COBISS.SI-ID:128198659 Povezava se odpre v novem oknu
Datum objave v RUL:07.11.2022
Število ogledov:760
Število prenosov:156
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Advanced engineering informatics : the science of supporting knowledge-intensive activities
Skrajšan naslov:Adv. eng. inf.
Založnik:Elsevier
ISSN:1474-0346
COBISS.SI-ID:7089686 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:podatkovno podprto konstruiranje, konstruiranje, razvoj izdelka, podatkovna analitika, bibliografska analiza, analiza omrežij

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0425
Naslov:Decentralizirane rešitve za digitalizacijo industrije ter pametnih mest in skupnosti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J5-2552
Naslov:Napovedovanje sodelovanja med raziskovalci s pomočjo odkrivanja zakonitosti iz literature

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj