This thesis describes the synthesis of the natural product cephalandole C and together with its acid analog they are thought to have different biological activities. Cephalandole C was discovered in 2006 in Taiwan as a component of the methanol extract from the plant Cephalanceropsis gracilis. In 2016 a team of Chinese researchers independently discovered the acid derivative while investigating natural products in traditional medicine for respiratory diseases (ban lan gen).
We developed an 8-step synthesis of cephalandole C from methyl anthranilate while using relatively cheap reagents, with which we wished to independently confirm the purposed structure of the isolated compound. We divided the structure of cephalandole C into 3 key fragments, i.e., the central indole structure, the glucose part, and the methyl anthranilate fragment. We started by synthesizing the indole central structure of the molecule from methyl anthranilate and methyl bromoacetate. We then added the methyl anthranilate molecule to the indole via an amide bond and with the O-glycosylation with acetobromo--D-glucose attached the sugar part of the molecule. With the aid of 2D NMR spectroscopic methods, we were able to determine the stereochemistry of the prepared glycoside. We removed the protective acetyl groups from the synthesized glycoside and obtained cephalandole C using triethylamine. The 1H NMR spectrum of the synthesized cephalandole C was in agreement with the reported 1H NMR spectrum of the compound that was isolated from the natural material Cephalanceropsis gracilis.
In collaboration with researchers from the Faculty of Computer and Information Science at the University of Ljubljana, we continued the development of an algorithm for the automatic structure elucidation of organic molecules from experimental spectroscopic data (IR, 1H, 13C NMR in HRMS) named Schmarnica. The first version used tabular spectroscopic data that we had to tabulate from spectra, which is quite time-consuming and it can lead to errors. Therefore, using raw spectroscopic data is key to making the elucidator easier and faster to use. We also started to add 2D NMR experiments (COSY, 1H–13C HSQC, 1H–13C HMBC) that expand the elucidation capabilities of the algorithm to more complex structures.
|