izpis_h1_title_alt

Uporaba strojnega učenja za simulacijo porazdelitev opazljivk na Velikem hadronskem trkalniku
ID Gavranovič, Jan (Avtor), ID Kerševan, Borut Paul (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (9,88 MB)
MD5: DEF238FE22E172DEA39FEBDF5368121D

Izvleček
Izziv, s katerim se soočajo eksperimenti v fiziki osnovnih delcev, so vse večje količine podatkov, tako iz detektorskih meritev, kot iz Monte Carlo simulacij. Zaradi tega postaja strojno učenje standardno orodje za reševanje različnih nalog na tem področju. To magistrsko delo razišče uporabo generativnih modelov, s katerimi lahko povečamo končno statistiko standardnih simulacij z ustvarjanjem sintetičnih podatkov, ki sledijo pravilnim kinematičnim porazdelitvam. V delu pokažemo uporabo dveh vrst generativnih algoritmov, variacijskih avtoenkoderjev in normalizacijskih tokov, ki so sposobni hitre generacije poljubnega števila novih dogodkov in korelacij med njimi. Kot primer simuliranih Monte Carlo podatkov uporabimo razpad teoretičnega Higgsovega bozona izven Standardnega modela. To magistrsko delo razišče uporabnost različnih tipov obeh vrst algoritmov pri različnih modelskih parametrih in številu začetnih dogodkov uporabljenih pri učenju. Tako dobljene porazdelitve dogodkov na koncu primerjamo z Monte Carlo porazdelitvami s pomočjo statističnih testov, kar nam poda oceno za njihovo medsebojno podobnost in kvaliteto reprodukcije.

Jezik:Slovenski jezik
Ključne besede:fizika osnovnih delcev, LHC, Monte Carlo simulacije, strojno učenje, generativno modeliranje, variacijski avtoenkoderji, normalizacijski tokovi
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2022
PID:20.500.12556/RUL-139855 Povezava se odpre v novem oknu
COBISS.SI-ID:120561923 Povezava se odpre v novem oknu
Datum objave v RUL:08.09.2022
Število ogledov:723
Število prenosov:86
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Using Machine Learning to Simulate Distributions of Observables at the Large Hadron Collider
Izvleček:
The challenge facing experimental particle physics is the never-ending increase in data coming from detector measurements and from Monte Carlo simulations. As a result, machine learning is becoming a standard tool for solving a variety of tasks found in this field of science. This work explores the use of generative models for increasing the final stage statistics of standard simulations by generating synthetic data that follow the same kinematic distributions. We show the use of two types of generative algorithms, variational autoencoders and normalizing flows, which are capable of fast generation of an arbitrary number of new events. As an example of Monte Carlo simulated data we use a theoretical Higgs boson production beyond the Standard Model. In this work we investigate the applicability of different types of the two methods with different model parameters and numbers of initial events used in training. The resulting event distributions are compared with original Monte Carlo distributions using statistical tests, to evaluate their similarity and quality of reproduction.

Ključne besede:particle physics, LHC, Monte Carlo simulations, machine learning, generative modeling, variational autoencoders, normalizing flows

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj