izpis_h1_title_alt

Soft sensor of bath temperature in an electric arc furnace based on a data-driven Takagi–Sugeno fuzzy model
ID Blažič, Aljaž (Avtor), ID Škrjanc, Igor (Avtor), ID Logar, Vito (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (1,03 MB)
MD5: BB32CE922E200A5040560C34623D4675
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S1568494621008711 Povezava se odpre v novem oknu

Izvleček
Electric arc furnaces (EAFs) are intended for the recycling of steel scrap. One of the more important variables in the recycling process is the tapping temperature of the steel. Due to the nature of the process, continuous measurement of the melt temperature is complicated and requires sophisticated measuring equipment; therefore, for most EAFs, separate temperature samples are taken several times before the melt is tapped, to verify whether the melt temperature is within the prescribed range. The measurements are obtained using disposable probes; when measurement is performed, the furnace must be switched off, leading to increased tap-to-tap time, unnecessary energy losses, and consequently, lower efficiency. The following paper presents a novel approach to EAF bath temperature estimation using a fuzzy model soft sensor obtained using Gustafson–Kessel input data clustering and particle swarm optimization of model parameters. The model uses the first temperature measurement as an initial condition, and measurements of the necessary EAF inputs to estimate continuously the bath temperature throughout the refining stage of the recycling process. The results have shown that the prediction accuracy of the proposed model is very high and that it fulfils the required tolerance band. The model is intended for parallel implementation in the EAF process, with the aim of achieving fewer temperature measurements, shorter tap-to-tap times, and decreased energy losses. Furthermore, if information about bath temperature is accessible in a continuous manner, operators can adjust the control of the EAF to achieve optimal tapping temperature and thus higher EAF efficiency.

Jezik:Angleški jezik
Ključne besede:electric arc furnace, fuzzy modeling, Gustafson–Kessel clustering, particle swarn optimization, temperature estimation
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FE - Fakulteta za elektrotehniko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2021
Št. strani:11 str.
Številčenje:Vol. 113, pt. B, art. 107949
PID:20.500.12556/RUL-138854 Povezava se odpre v novem oknu
UDK:681.5:621.365.2
ISSN pri članku:1568-4946
DOI:10.1016/j.asoc.2021.107949 Povezava se odpre v novem oknu
COBISS.SI-ID:79852547 Povezava se odpre v novem oknu
Datum objave v RUL:23.08.2022
Število ogledov:754
Število prenosov:127
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Applied soft computing
Založnik:Elsevier
ISSN:1568-4946
COBISS.SI-ID:16080679 Povezava se odpre v novem oknu

Licence

Licenca:CC BY-NC-ND 4.0, Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by-nc-nd/4.0/deed.sl
Opis:Najbolj omejujoča licenca Creative Commons. Uporabniki lahko prenesejo in delijo delo v nekomercialne namene in ga ne smejo uporabiti za nobene druge namene.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:elektroobločna peč, mehko modeliranje, rojenje Gustafson-Kessel, optimizacija z roji delcev, ocena temperature

Projekti

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:869815
Naslov:Optimization and performance improving in metal industry by digital technologies
Akronim:INEVITABLE

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P2-0219
Naslov:Modeliranje, simulacija in vodenje procesov

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj