Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Machine learning based nominal root stress calculation model for gears with a progressive curved path of contact
ID
Urbas, Uroš
(
Avtor
),
ID
Zorko, Damijan
(
Avtor
),
ID
Vukašinović, Nikola
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,45 MB)
MD5: A82274E131FE8554C8C72A2B66A9A975
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0094114X21001889
Galerija slik
Izvleček
The study aims to investigate the possibility of employing machine learning models in the design of non-involute gears. Such a model would be useful for design calculations of non-standard gears, where there are no available guidelines. The aim is to create a decision-support model accompanying the Finite Element Method (FEM) simulations, from which the data for training was collected. Multiple models for numerical prediction were tested, i.e. linear regression, Support Vector Machine, K-nearest neighbour, neural network, AdaBoost, and random forest. The models were firstly validated with N-fold cross-validation. Further validation was done with new FEM simulations. The results from the simulations and the models were in good agreement. The best-performing ones were random forest and AdaBoost. Based on the validation results, a machine learning constructed model for calculating nominal root stress in gears with a progressive curved path of contact is proposed. The model can be used as an alternative to FEM simulations for determining the nominal root stress in real-time, and is able to calculate the stress for gears with different number of teeth, widths, modules, paths of contact, materials, and loads. Therefore, many combinations of gear geometries can be analysed and the most suitable can be chosen.
Jezik:
Angleški jezik
Ključne besede:
machine learning
,
nominal root stress
,
gears
,
Finite Element Method
,
FEM
,
random forest
,
AdaBoost
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2021
Št. strani:
14 str.
Številčenje:
Vol. 165, art. 104430
PID:
20.500.12556/RUL-138691
UDK:
004.85:621.833:519.61
ISSN pri članku:
0094-114X
DOI:
10.1016/j.mechmachtheory.2021.104430
COBISS.SI-ID:
69206531
Datum objave v RUL:
09.08.2022
Število ogledov:
815
Število prenosov:
133
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Mechanism and machine theory
Skrajšan naslov:
Mech. mach. theory
Založnik:
Elsevier
ISSN:
0094-114X
COBISS.SI-ID:
5762311
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
strojno učenje
,
korenska napetost
,
zobniki
,
metoda končnih elementov
Projekti
Financer:
Drugi - Drug financer ali več financerjev
Program financ.:
Republic of Slovenia
Številka projekta:
C3330–18–952014
Akronim:
MAPgears
Financer:
EC - European Commission
Program financ.:
European Regional Development Fund
Akronim:
MAPgears
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Program financ.:
Young researchers
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj