Podrobno

A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy
ID Smole, Tim (Avtor), ID Žunkovič, Bojan (Avtor), ID Pičulin, Matej (Avtor), ID Kokalj, Enja (Avtor), ID Robnik Šikonja, Marko (Avtor), ID Kukar, Matjaž (Avtor), ID Fotiadis, Dimitrios I. (Avtor), ID Pezoulas, Vasileios C. (Avtor), ID Tachos, Nikolaos S. (Avtor), ID Barlocco, Fausto (Avtor), ID Mazzarotto, Francesco (Avtor), ID Popović, Dejana (Avtor), ID Maier, Lars S. (Avtor), ID Velicki, Lazar (Avtor), ID MacGowan, Guy A. (Avtor), ID Olivotto, Iacopo (Avtor), ID Filipović, Nenad (Avtor), ID Jakovljević, Djordje G. (Avtor), ID Bosnić, Zoran (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (4,11 MB)
MD5: C4B304E87AAF7747E4BC442E5DD5BC3A
URLURL - Izvorni URL, za dostop obiščite https://www.sciencedirect.com/science/article/pii/S001048252100442X Povezava se odpre v novem oknu

Izvleček
Background: Machine learning (ML) and artificial intelligence are emerging as important components of precision medicine that enhance diagnosis and risk stratification. Risk stratification tools for hypertrophic cardiomyopathy (HCM) exist, but they are based on traditional statistical methods. The aim was to develop a novel machine learning risk stratification tool for the prediction of 5-year risk in HCM. The goal was to determine if its predictive accuracy is higher than the accuracy of the state-of-the-art tools. Method: Data from a total of 2302 patients were used. The data were comprised of demographic characteristics, genetic data, clinical investigations, medications, and disease-related events. Four classification models were applied to model the risk level, and their decisions were explained using the SHAP (SHapley Additive exPlanations) method. Unwanted cardiac events were defined as sustained ventricular tachycardia occurrence (VT), heart failure (HF), ICD activation, sudden cardiac death (SCD), cardiac death, and all-cause death. Results: The proposed machine learning approach outperformed the similar existing risk-stratification models for SCD, cardiac death, and all-cause death risk-stratification: it achieved higher AUC by 17%, 9%, and 1%, respectively. The boosted trees achieved the best performing AUC of 0.82. The resulting model most accurately predicts VT, HF, and ICD with AUCs of 0.90, 0.88, and 0.87, respectively. Conclusions: The proposed risk-stratification model demonstrates high accuracy in predicting events in patients with hypertrophic cardiomyopathy. The use of a machine-learning risk stratification model may improve patient management, clinical practice, and outcomes in general.

Jezik:Angleški jezik
Ključne besede:hypertrophic cardiomyopathy, risk stratification, machine learning, artificial intelligence
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FRI - Fakulteta za računalništvo in informatiko
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2021
Št. strani:9 str.
Številčenje:Vol. 135, art. 104648
PID:20.500.12556/RUL-138683 Povezava se odpre v novem oknu
UDK:004.8:616.12-008.46
ISSN pri članku:0010-4825
DOI:10.1016/j.compbiomed.2021.104648 Povezava se odpre v novem oknu
COBISS.SI-ID:71489795 Povezava se odpre v novem oknu
Datum objave v RUL:09.08.2022
Število ogledov:1325
Število prenosov:202
Metapodatki:XML DC-XML DC-RDF
:
SMOLE, Tim, ŽUNKOVIČ, Bojan, PIČULIN, Matej, KOKALJ, Enja, ROBNIK ŠIKONJA, Marko, KUKAR, Matjaž, FOTIADIS, Dimitrios I., PEZOULAS, Vasileios C., TACHOS, Nikolaos S., BARLOCCO, Fausto, MAZZAROTTO, Francesco, POPOVIĆ, Dejana, MAIER, Lars S., VELICKI, Lazar, MACGOWAN, Guy A., OLIVOTTO, Iacopo, FILIPOVIĆ, Nenad, JAKOVLJEVIĆ, Djordje G. in BOSNIĆ, Zoran, 2021, A machine learning-based risk stratification model for ventricular tachycardia and heart failure in hypertrophic cardiomyopathy. Computers in biology and medicine [na spletu]. 2021. Vol. 135,  104648. [Dostopano 7 april 2025]. DOI 10.1016/j.compbiomed.2021.104648. Pridobljeno s: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=138683
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Computers in biology and medicine
Skrajšan naslov:Comput. biol. med.
Založnik:Elsevier
ISSN:0010-4825
COBISS.SI-ID:189801 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:hipertrofična kardiomiopatija, napovedovanje tveganja, strojno učenje, umetna inteligenca

Projekti

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:777204
Naslov:In silico trials for drug tracing the effects of sarcomeric protein mutations leading to familial cardiomyopathy
Akronim:SILICOFCM

Podobna dela

Podobna dela v RUL:
  1. Combined effects for non-autonomous singular biharmonic problems
  2. On critical variable-order Kirchhoff type problems with variable singular exponent
  3. Infinitely many symmetric solutions for anisotropic problems driven by nonhomogeneous operators
  4. On weak solutions for fourth-order problems involving the Leray-Lions type operators
  5. New class of sixth-order nonhomogeneous p(x)-Kirchhoff problems with sign-changing weight functions
Podobna dela v drugih slovenskih zbirkah:
  1. A multilevel method for discontinuous galerkin approximation of three-dimensional elliptic problems
  2. Functional a posteriori error estimates for discontinuous Galerkin approximations of elliptic problems
  3. Efficient computable error bounds for discontinuous Galerkin approximations of elliptic problems
  4. A multilevel method for discontinuous Galerkin approximation of three-dimensional anisotropic elliptic problems
  5. Stability estimates for h-p spectral element methods for general elliptic problems on curvilinear domains

Nazaj