izpis_h1_title_alt

Računanje lastnih vrednosti brez uporabe determinant : delo diplomskega seminarja
ID Papež, Sara (Avtor), ID Dolžan, David (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (413,72 KB)
MD5: 4C4E85D9850F4269FC44FA974C274A42

Izvleček
V diplomski nalogi je formuliran algoritem za iskanje lastnih vrednosti in lastnih vektorjev brez uporabe determinante. Za algoritem je ključno razumevanje linearne neodvisnosti oziroma odvisnosti, zato je v delu to temeljito opisano. Definirali smo lastne vrednosti, lastne vektorje, matrični polinom, minimalni polinom matrike, minimalni polinom vektorja glede na matriko in v povezavi s temi pojmi navedli trditve, ki so nam pomagale pri konstrukciji algoritma. Postopek za iskanje lastnih vrednosti in vektorjev smo skozi delo gradili postopoma. Najprej smo ga uporabili na nedefektnih matrikah. Nato smo si pogledali še definicijo defektnih matrik, korenskih lastnih vektorjev, Jordanovo verigo korenskih lastnih vektorjev in trditve v povezavi z njimi. Skozi celotno diplomsko nalogo so nova dognanja uporabljena na primerih. Na koncu smo zapisali celoten univerzalen algoritem, ne glede na začetno matriko.

Jezik:Slovenski jezik
Ključne besede:lastne vrednosti, lastni vektorji, minimalni polinom, minimalni polinom vektorja glede na matriko, korenski lastni vektor, Jordanova veriga korenskih lastnih vektorjev
Vrsta gradiva:Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Tipologija:2.11 - Diplomsko delo
Organizacija:FMF - Fakulteta za matematiko in fiziko
Leto izida:2022
PID:20.500.12556/RUL-138317 Povezava se odpre v novem oknu
UDK:512
COBISS.SI-ID:116135171 Povezava se odpre v novem oknu
Datum objave v RUL:15.07.2022
Število ogledov:819
Število prenosov:79
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Computing eigenvalues without determinants
Izvleček:
In this bachelor thesis we formulate the algorithm for finding eigenvalues and eigenvectors without the use of determinant. For the algorithm to work, the understanding of linear independance and dependance is crucial, that is why we chose to present these two principles in more detail. We defined eigenvalues, eigenvectors, matrix polynomial, minimal polynomial of the matrix, and minimal polynomial of a vector with respect to matrix. These definitions and theorems helped us to construct our algorithm. We built our method step-by-step through our bachelor thesis. First, we used it on non defective matrices. Then we defined defective matrices, generalized vectors and Jordan chain of generalized eigenvectors. Throughout the thesis, examples are used to show what we have discovered till then. In the end, we formulated the whole universal algorithm, which works no matter what kind of the matrix we start with.

Ključne besede:eigenvalues, eigenvectors, minimal polynomial, minimal polynomial of a vector with respect to matrix, generalized eigenvector, Jordan chain of generalized eigenvectors

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj