izpis_h1_title_alt

Optimization of friction stir welding operation using optimal Taguchi-based ANFIS and genetic algorithm
ID Van, An-Le (Avtor), ID Wilk-Jakubowski, Jacek (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (3,37 MB)
MD5: D6C3A8603FE88888B331003C38676FC9
URLURL - Izvorni URL, za dostop obiščite https://www.sv-jme.eu/sl/article/optimization-of-friction-stir-welding-operation-using-optimal-taguchi-based-anfis-and-genetic-algorithm/ Povezava se odpre v novem oknu

Izvleček
The friction stir welding (FSW) process is an effective approach to produce joints having superior quality. Unfortunately, most published investigations primarily addressed optimizing process parameters to boost product quality. In the current work, the FSW operation of the aluminum alloy has been considered and optimized to decrease the specific welding energy (SWE) and enhance the jointing efficiency (JE) as well as micro-hardness at the welded zone (MH). The parameter inputs are the rotational speed (S), welding speed (f), depth of penetration (D), and tool title angle (T). The optimal adaptive neuro-based-fuzzy inference system (ANFIS) models were utilized to propose the welding responses in terms of the FSW parameters, while the Taguchi method was applied to optimize the ANFIS operating parameters. The neighborhood cultivation genetic algorithm (NCGA) was employed to determine the best solution. The obtained results indicated that the optimal values of the S, f, D, and T are 560 RPM, 90 mm/min, 0.9 mm, and 2 deg, respectively. The SWE is decreased by 17.0%, while the JE and MH are improved by 2.3% and 6.4%, respectively at the optimal solution. The optimal ANFIS models for the welding responses were adequate and reliably employed to forecast the response values. The proposed optimization approach comprising the orthogonal array-based ANFIS, Taguchi, and NCGA could be effectively and efficiently utilized to save experimental costs as well as human efforts, produce optimal predictive models, and select optimum outcomes. The observed findings contributed significant data to determine optimal FSW parameters and enhance welding responses.

Jezik:Angleški jezik
Ključne besede:friction stir welding, energy efficiency, jointing efficiency, micro-hardness, NCGA
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FS - Fakulteta za strojništvo
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Datum objave:12.05.2022
Leto izida:2022
Št. strani:15 str.
Številčenje:Vol. 68, no. 6
PID:20.500.12556/RUL-138119 Povezava se odpre v novem oknu
UDK:621.791
ISSN pri članku:0039-2480
DOI:10.5545/sv-jme.2022.111 Povezava se odpre v novem oknu
COBISS.SI-ID:114902531 Povezava se odpre v novem oknu
Datum objave v RUL:11.07.2022
Število ogledov:636
Število prenosov:111
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Strojniški vestnik
Skrajšan naslov:Stroj. vestn.
Založnik:Zveza strojnih inženirjev in tehnikov Slovenije [etc.], = Association of Mechanical Engineers and Technicians of Slovenia [etc.
ISSN:0039-2480
COBISS.SI-ID:762116 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:12.05.2022

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Optimizacija varjenja z gnetenjem z optimalnim sistemom ANFIS po metodi Taguchi in z genetskim algoritmom
Ključne besede:varjenje z gnetenjem, energijska učinkovitost, učinkovitost spajanja, mikrotrdota, NCGA

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj