Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Analysis of floating objects based on non-intrusive measuring methods and machine learning
ID
Škerjanec, Mateja
(
Avtor
),
ID
Kregar, Klemen
(
Avtor
),
ID
Štebe, Gašper
(
Avtor
),
ID
Rak, Gašper
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,13 MB)
MD5: A05848B08F32BA11A99BC2675642D0F1
URL - Izvorni URL, za dostop obiščite
https://www.sciencedirect.com/science/article/pii/S0169555X22001477
Galerija slik
Izvleček
Floating objects in rivers and streams present a growing problem, not only as they may cause clogging of bridges and other hydraulic structures, and consequently floods, but also because they can have a diverse impact on river (and marine) ecosystems, either positive (in case of in-channel wood) or negative (in case of anthropogenic floating objects). To automatically identify different types of floating objects (i.e., wood pieces, EPS and XPS boards, and plastic and metal containers) and their volumes in an open channel, we propose a novel methodology based on non-intrusive measuring methods and machine learning. To this end, we tested the combination of an industrial 2D laser scanner, a high-speed camera, and an ultrasonic sensor. In the laboratory experiment, 36 samples were scanned separately, two to three times in a row, resulting in 77 raw LIDAR clouds and image sequences. Raw data were post-processed with custom-developed algorithms to determine the volumes of samples above the water surface and their intensity histograms. The latter were analyzed with the machine learning algorithm to distinguish between different material types of floating objects. For each of them, the material density was assigned. Based on the identified floating object's material type, pre-assigned density, and measured volume above the water surface, the sample volumes were calculated and compared with the actual ones determined before setting up the experiment. The results show that the proposed approach enables material recognition with accuracy higher than 90%. The average volume calculation error based on detected material type, assigned densities, and measured floating object's volume above the water surface is approx. 2%. The proposed methodology proved promising for automatic differentiation between different types of floating objects and remote measurement of their volume. To use the method in real-world applications (e.g., on bridges) for forecasting downstream quantities of floating objects, and consequently adjusting their management accordingly, additional measurements are needed, focusing on simultaneous scanning of multiple floating objects, under different flow conditions.
Jezik:
Angleški jezik
Ključne besede:
floating objects
,
laser scanning
,
machine learning
,
volume estimation
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FGG - Fakulteta za gradbeništvo in geodezijo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2022
Št. strani:
12 str.
Številčenje:
Vol. 408, art. 108254
PID:
20.500.12556/RUL-137051
UDK:
626/627
ISSN pri članku:
0169-555X
DOI:
10.1016/j.geomorph.2022.108254
COBISS.SI-ID:
105599235
Datum objave v RUL:
31.05.2022
Število ogledov:
754
Število prenosov:
133
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Geomorphology : an international journal of pure and applied geomorphology
Skrajšan naslov:
Geomorphology
Založnik:
Elsevier
ISSN:
0169-555X
COBISS.SI-ID:
9839621
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
plavje
,
lasersko skeniranje
,
strojno učenje
,
meritve volumna
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0180
Naslov:
Vodarstvo in geotehnika: orodja in metode za analize in simulacije procesov ter razvoj tehnologij
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0227
Naslov:
Geoinformacijska infrastruktura in trajnostni prostorski razvoj Slovenije
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj