Nevronske reprezentacije so nov način predstavitve modelov pri upodabljanju, geometrijskem modeliranju in simulaciji. V primerjavi s tradicionalnimi predstavitvami jih je mogoče fleksibilno vključiti v diferencialne cevovode in uporabiti za kompresijo geometrije in tekstur modela. Čeprav nedavne izboljšave nevronskih predstavitev omogočajo kompresijo modela in ohranjanje njegovih podrobnosti, so te predstavitve neprimerne za realno-časovne cevovode. V tem delu predstavimo hibridno poligonalno-nevronsko predstavitev, ki je primerna za učinkovito uporabo v algoritmih za sledenje poti. Naš pristop je sestavljen iz osnovne preproste poligonalne mreže, ki služi kot grob okvir okoli originalnega objekta in množice nevronskih mrež, ki kodirajo atribute osnovnega modela na podlagi podatkov o presečišču žarkov in trikotnikov. Našo arhitekturo je mogoče zlahka integrirati v obstoječe cevovode s posodobitvijo presečiščne metode. Ker so nevronski modeli majhni in je osnovni model sestavljen iz majhnega števila primitivov, naša metoda kaže potencial za pospešitev testiranja presečišč v algoritmih za sledenje žarkov. Učinkovitost našega pristopa dokazujemo s tem, da prvotno velikost modela zmanjšamo 4,74-krat, število trikotnikov zmanjšamo 37,19-krat in hkrati dosežemo zadovoljive vizualne rezultate.
|