izpis_h1_title_alt

COVID-19 in Slovenia, from a success story to disaster : what lessons can be learned?
ID Ružić Gorenjec, Nina (Avtor), ID Kejžar, Nataša (Avtor), ID Manevski, Damjan (Avtor), ID Pohar Perme, Maja (Avtor), ID Vratanar, Bor (Avtor), ID Blagus, Rok (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (508,95 KB)
MD5: D72E8C28367A4A148D37F77308A0CD64
URLURL - Izvorni URL, za dostop obiščite https://www.mdpi.com/2075-1729/11/10/1045 Povezava se odpre v novem oknu

Izvleček
During the first wave of the COVID-19 pandemic in spring 2020, Slovenia was among the least affected countries, but the situation became drastically worse during the second wave in autumn 2020 with high numbers of deaths per number of inhabitants, ranking Slovenia among the most affected countries. This was true even though strict non-pharmaceutical interventions (NPIs) to control the progression of the epidemic were being enforced. Using a semi-parametric Bayesian model developed for the purpose of this study, we explore if and how the changes in mobility, their timing and the activation of contact tracing can explain the differences in the epidemic progression of the two waves. To fit the model, we use data on daily numbers of deaths, patients in hospitals, intensive care units, etc., and allow transmission intensity to be affected by contact tracing and mobility (data obtained from Google Mobility Reports). Our results imply that though there is some heterogeneity not explained by mobility levels and contact tracing, implementing interventions at a similar stage as in the first wave would keep the death toll and the health system burden low in the second wave as well. On the other hand, sticking to the same timeline of interventions as observed in the second wave and focusing on enforcing a higher decrease in mobility would not be as beneficial. According to our model, the ‘dance’ strategy, i.e., first allowing the numbers to rise and then implementing strict interventions to make them drop again, has been played at too-late stages of the epidemic. In contrast, a 15–20% reduction of mobility compared to pre-COVID level, if started at the beginning and maintained for the entire duration of the second wave and coupled with contact tracing, could suffice to control the epidemic. A very important factor in this result is the presence of contact tracing; without it, the reduction in mobility needs to be substantially larger. The flexibility of our proposed model allows similar analyses to be conducted for other regions even with slightly different data sources for the progression of the epidemic; the extension to more than two waves is straightforward. The model could help policymakers worldwide to make better decisions in terms of the timing and severity of the adopted NPIs.

Jezik:Angleški jezik
Ključne besede:COVID-19, modeling epidemics, Bayesian inference, discrete renewal process, nonpharmaceutical interventions, reproduction number
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:MF - Medicinska fakulteta
FŠ - Fakulteta za šport
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2021
Št. strani:23 str.
Številčenje:Vol. 11, iss. 10, art. 1045
PID:20.500.12556/RUL-136271 Povezava se odpre v novem oknu
UDK:616.9
ISSN pri članku:2075-1729
DOI:10.3390/life11101045 Povezava se odpre v novem oknu
COBISS.SI-ID:79132675 Povezava se odpre v novem oknu
Datum objave v RUL:21.04.2022
Število ogledov:867
Število prenosov:125
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Life
Skrajšan naslov:Life
Založnik:MDPI
ISSN:2075-1729
COBISS.SI-ID:519982617 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:04.10.2021

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:COVID-19, modeliranje epidemij, Bajesovo sklepanje

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:N1-0035
Naslov:Izboljšanje napovedovanja redkih dogodkov

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P3-0154
Naslov:Metodologija za analizo podatkov v medicini

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:J3-1761
Naslov:Število izgubljenih let kot mera bremena bolezni

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj