Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Depth-image segmentation based on evolving principles for 3D sensing of structured indoor environments
ID
Antić, Miloš
(
Avtor
),
ID
Zdešar, Andrej
(
Avtor
),
ID
Škrjanc, Igor
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(9,35 MB)
MD5: B205BD67EACBA8CB6ABCA6D832730CDC
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/1424-8220/21/13/4395
Galerija slik
Izvleček
This paper presents an approach of depth image segmentation based on the Evolving Principal Component Clustering (EPCC) method, which exploits data locality in an ordered data stream. The parameters of linear prototypes, which are used to describe different clusters, are estimated in a recursive manner. The main contribution of this work is the extension and application of the EPCC to 3D space for recursive and real-time detection of flat connected surfaces based on linear segments, which are all detected in an evolving way. To obtain optimal results when processing homogeneous surfaces, we introduced two-step filtering for outlier detection within a clustering framework and considered the noise model, which allowed for the compensation of characteristic uncertainties that are introduced into the measurements of depth sensors. The developed algorithm was compared with well-known methods for point cloud segmentation. The proposed approach achieves better segmentation results over longer distances for which the signal-to-noise ratio is low, without prior filtering of the data. On the given database, an average rate higher than 90% was obtained for successfully detected flat surfaces, which indicates high performance when processing huge point clouds in a non-iterative manner.
Jezik:
Angleški jezik
Ključne besede:
depth sensor
,
line extraction
,
flat surface extraction
,
evolving clustering
,
machine vision
,
smart sensors
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FE - Fakulteta za elektrotehniko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2021
Št. strani:
30 str.
Številčenje:
Vol. 21, iss. 13, art. 4395
PID:
20.500.12556/RUL-135600
UDK:
681.5:004
ISSN pri članku:
1424-8220
DOI:
10.3390/s21134395
COBISS.SI-ID:
74209795
Datum objave v RUL:
22.03.2022
Število ogledov:
719
Število prenosov:
132
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Sensors
Skrajšan naslov:
Sensors
Založnik:
MDPI
ISSN:
1424-8220
COBISS.SI-ID:
10176278
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
01.07.2021
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
globinski senzorji
,
ekstrakcija daljic
,
ekstrakcija ravnih površin
,
samorazvijajoče se rojenje
,
strojni vid
,
pametni senzorji
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0219
Naslov:
Modeliranje, simulacija in vodenje procesov
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj