Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Investigation of laser surface remelting supported by acoustic emission analysis and machine learning
ID
Ravnikar, Dunja
(
Avtor
),
ID
Mojškerc, Bor
(
Avtor
),
ID
Šturm, Roman
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,57 MB)
MD5: 9E6C0D86ED3BCF159668CC0691FC827D
URL - Izvorni URL, za dostop obiščite
https://link.springer.com/article/10.1007/s11661-021-06552-7
Galerija slik
Izvleček
In the present work, laser surface remelting (LSR) was carried out on C45 carbon steel using an Nd:YAG pulse laser. The effect of process parameters, such as different laser pulse durations and the absence or presence of a graphite absorber, on the microstructure, remelting depth, and microhardness was examined. In most cases, the graphite coating enhanced the laser energy absorption into the surface, resulting in greater depths of the remelted zone (RZ). RZ depth increased ranging from 8 to 350 pct, depending on the laser pulse duration. An increase in the surface microhardness by a factor of 2.6 was achieved in comparison with the substrate material microhardness, namely 559 HV 0.05 versus 211 HV 0.05. Concurrently, the LSR treatment parameters were also investigated using the in process generated acoustic emission (AE) signals. AE characteristics, such as AE peak amplitude, signal duration, count, and energy, were evaluated. A correlation of the AE characteristics was established for the various LSR treatment parameters. The LSR treatment classification results confirm the feasibility of using AE in combination with machine learning (ML) for monitoring LSR and the resulting surface properties of the hardened material.
Jezik:
Angleški jezik
Ključne besede:
laser surface remelting
,
microstructure
,
acoustic emission
,
machine learning
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Recenzirani rokopis
Leto izida:
2022
Št. strani:
13 str.
Številčenje:
Vol. 53
PID:
20.500.12556/RUL-134938
UDK:
620.1/.2:621.785:534
ISSN pri članku:
1073-5623
DOI:
10.1007/s11661-021-06552-7
COBISS.SI-ID:
96993283
Datum objave v RUL:
11.02.2022
Število ogledov:
935
Število prenosov:
144
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Metallurgical and materials transactions
Skrajšan naslov:
Metall. mater. trans., A Phys. metall. mater. sci.
Založnik:
Minerals, Metals & Materials Society, ASM International
ISSN:
1073-5623
COBISS.SI-ID:
2752790
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
04.02.2022
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
lasersko površinsko pretaljevanje
,
mikrostruktura
,
akustična emisija
,
strojno učenje
Projekti
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:
P2-0270
Naslov:
Proizvodni sistemi, laserske tehnologije in spajanje materialov
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj