izpis_h1_title_alt

Object detection for automatic cancer cell counting in zebrafish xenografts
ID Albuquerque, Carina (Avtor), ID Vanneschi, Leonardo (Avtor), ID Henriques, Roberto (Avtor), ID Castelli, Mauro (Avtor), ID Póvoa, Vanda (Avtor), ID Fior, Rita (Avtor), ID Papanikolaou, Nickolas (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (2,46 MB)
MD5: 2D6024305AEFE227313F238E9977BEA5
URLURL - Izvorni URL, za dostop obiščite https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260609 Povezava se odpre v novem oknu

Izvleček
Cell counting is a frequent task in medical research studies. However, it is often performed manually; thus, it is time-consuming and prone to human error. Even so, cell counting auto- mation can be challenging to achieve, especially when dealing with crowded scenes and overlapping cells, assuming different shapes and sizes. In this paper, we introduce a deep learning-based cell detection and quantification methodology to automate the cell counting process in the zebrafish xenograft cancer model, an innovative technique for studying tumor biology and for personalizing medicine. First, we implemented a fine-tuned architecture based on the Faster R-CNN using the Inception ResNet V2 feature extractor. Second, we performed several adjustments to optimize the process, paying attention to constraints such as the presence of overlapped cells, the high number of objects to detect, the heterogeneity of the cells’ size and shape, and the small size of the data set. This method resulted in a median error of approximately 1% of the total number of cell units. These results demon- strate the potential of our novel approach for quantifying cells in poorly labeled images. Compared to traditional Faster R-CNN, our method improved the average precision from 71% to 85% on the studied data set.

Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:EF - Ekonomska fakulteta
Status publikacije:Objavljeno
Različica publikacije:Objavljena publikacija
Leto izida:2021
Št. strani:28 str.
Številčenje:Vol. 16, iss. 11 (art. 0260609)
PID:20.500.12556/RUL-134809 Povezava se odpre v novem oknu
UDK:659.2:004
ISSN pri članku:1932-6203
DOI:10.1371/journal.pone.0260609 Povezava se odpre v novem oknu
COBISS.SI-ID:87543043 Povezava se odpre v novem oknu
Datum objave v RUL:02.02.2022
Število ogledov:38116
Število prenosov:116
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:PloS one
Založnik:PLOS
ISSN:1932-6203
COBISS.SI-ID:2005896 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:29.11.2021

Projekti

Financer:FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:PTDC/CCI-INF/29168/2017
Naslov:BINDER

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Program financ.:Raziskovalni program
Številka projekta:P5-0410
Naslov:Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj