izpis_h1_title_alt

Machine learning-assisted non-destructive plasticizer identification and quantification in historical PVC objects based on IR spectroscopy
ID Rijavec, Tjaša (Avtor), ID Ribar, David (Avtor), ID Markelj, Jernej (Avtor), ID Strlič, Matija (Avtor), ID Kralj Cigić, Irena (Avtor)

.zipZIP - Raziskovalni podatki, prenos (4,90 MB)
MD5: 18AF60A6D929D59236A61A2511EED7D4
.docxDOCX - Opis podatkov, prenos (14,04 KB)
MD5: 37FF1CE1BAEC09F001103496E7B2F99C

Izvleček
Non-destructive spectroscopic analysis combined with machine learning rapidly provides information on the identity and content of plasticizers in PVC objects of heritage value. For the first time, a large and diverse collection of more than 100 PVC objects in different degradation stages and of diverse chemical compositions was analysed by chromatographic and spectroscopic techniques to create a dataset used to construct classification and regression models. Accounting for this variety makes the model more robust and reliable for the analysis of objects in museum collections. Six different machine learning classification algorithms were compared to determine the algorithm with the highest classification accuracy of the most common plasticizers, based solely on the spectroscopic data. A classification model capable of the identification of di(2-ethylhexyl) phthalate, di(2-ethylhexyl) terephthalate, diisononyl phthalate, diisodecyl phthalate, a mixture of diisononyl phthalate and diisodecyl phthalate, and unplasticized PVC was constructed. Additionally, regression models for quantification of di(2-ethylhexyl) phthalate and di(2-ethylhexyl) terephthalate in PVC were built. This study of real-life objects demonstrates that classification and quantification of plasticizers in a general collection of degraded PVC objects is possible, providing valuable data to collection managers.

Jezik:Angleški jezik
Ključne besede:PVC, chromatography, machine learning, classification, regression, spectroscopy, plasticizers, heritage science, preventive conservation
Organizacija:FKKT - Fakulteta za kemijo in kemijsko tehnologijo
Leto izida:2022
PID:20.500.12556/RUL-134404 Povezava se odpre v novem oknu
Datum objave v RUL:13.01.2022
Število ogledov:1674
Število prenosov:203
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Projekti

Financer:EC - European Commission
Program financ.:H2020
Številka projekta:814496
Naslov:Active & intelligent PAckaging materials and display cases as a tool for preventive conservation of Cultural Heritage.
Akronim:APACHE

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P1-0153
Naslov:Raziskave in razvoj analiznih metod in postopkov

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj