Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Repozitorij Univerze v Ljubljani
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Napredno
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Podrobno
Trust, automation bias and aversion : algorithmic decision-making in the context of credit scoring
ID
Gsenger, Rita
(
Avtor
),
ID
Strle, Toma
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(547,95 KB)
MD5: A3FD4BD6ACA795B66D46A2BA6DAD1CA9
URL - Izvorni URL, za dostop obiščite
https://indecs.eu/index.php?s=x&y=2021&p=542-560
Galerija slik
Izvleček
Algorithmic decision-making (ADM) systems increasingly take on crucial roles in our technology-driven society, making decisions, for instance, concerning employment, education, finances, and public services. This paper aims to identify peoples' attitudes towards ADM systems and ensuing behaviours when dealing with ADM systems as identified in the literature and in relation to credit scoring. After briefly discussing main characteristics and types of ADM systems, we first consider trust, automation bias, automation complacency and algorithmic aversion as attitudes towards ADM systems. These factors result in various behaviours by users, operators, and managers. Sec-ond, we consider how these factors could affect attitudes towards and use of ADM systems within the context of credit scoring. Third, we describe some possible strategies to reduce aversion, bias, and complacency, and consider several ways in which trust could be increased in the context of credit scoring. Importantly, although many advantages in applying ADM systems to complex choice problems can be identified, using ADM systems should be approached with care - e.g., the models ADM systems are based on are sometimes flawed, the data they gather to support or make decisions are easily biased, and the motives for their use unreflected upon or unethical.
Jezik:
Angleški jezik
Ključne besede:
algorithmic decision-making
,
credit scoring
,
trust
,
automation bias
,
algorithmic aversion
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
PEF - Pedagoška fakulteta
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2021
Št. strani:
Str. 542-560
Številčenje:
Vol. 19, no. 4
PID:
20.500.12556/RUL-134359
UDK:
165.194
ISSN pri članku:
1334-4676
DOI:
10.7906/indecs.19.4.7
COBISS.SI-ID:
92566787
Avtorske pravice:
Podatek o licenci CC BY 4.0 je naveden na spletni strani revije (
https://indecs.eu/
). (Datum opombe: 16. 9. 2025)
Datum objave v RUL:
11.01.2022
Število ogledov:
1121
Število prenosov:
220
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Interdisciplinary description of complex systems
Skrajšan naslov:
Interdiscip. descr. complex syst.
Založnik:
Hrvatsko interdisciplinarno društvo = Croatian Interdisciplinary Society
ISSN:
1334-4676
COBISS.SI-ID:
6480201
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
odločanje
,
algoritmi
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj