Eno izmed najbolj pomembnih orodij za napovedi in raziskave robne plazme (SOL) so numerične simulacije. Ena največjih groženj, ki lahko privede do resnih neželenih posledic na fuzijskih reaktorjih naslednje generacije, kot je ITER, so prehodne toplotne obremenitve na plazmi izpostavljenih komponentah (PFC) zaradi magnetohidrodinamičnih relaksacij plazme, znanih kot robni lokalizirani pojavov (ELM). Te obremenitve predstavljajo pomembno grožnjo za življenjsko dobo PFC-jev, zlasti za divertorske tarče, in bodo lahko vzrok za za njihovo pogosto zamenjavo, kar ima velik vpliv na izvajanje raziskovalnega načrta ITER. Prvi korak k reševanju tega raziskovalnega problema je razumevanje in karakterizacija osnovne fizike ELM-a, ki ustreza zahtevnim scenarijem praznjenja naboja, kot so vzajemno nabiti in nevtralni delci s polji in interakcija material-površina, ki potekajo v tokamakih. Delo temelji na hipotezi, da bo razumevanje in opis nenadzorovanih ELM-ov, tj. spontanega prostorsko-časovnega razvoja, zagotovil zadostno znanje za prihodnjo vzpostavitev popolnoma nadzorovanih režimov zadrževanih ELM-ov.
V tej nalogi se raziskuje prednosti in učinkovitost plazme ter modeliranje divertorja, vključno s časovno odvisnimi pojavi ELM-a. Glavni namen je z modeliranjem napovedati vpliv tako velikih prehodnih toplotnih obremenitev in sicer z uporabo kod za modeliranje robne tekočinske plazme, kot je SOLPS-ITER, ki je kombinacija tekočinskih (B2.5) -nevtralnih Monte-Carlo (EIRENE) kod in je eno najbolj kompleksnih orodij te vrste. V SOLPS-ITER je ELM grobo aproksimiran kot fiksno velik (vendar časovno omejen) prirastek transportnih koeficientov za delce in toploto, ki posnemajo določeno skupno izgubo energije ELM-a. Vendar je ena od težav tega pristopa, da se za robne pogoje na vhodu v plašč tarče pričakuje, da se bodo časovno močno spreminjali v času ELM-ja, medtem ko se tipično v fluidnih kodah običajno uporabljajo fiksni kinetični faktorji prenosa toplote ciljnega plašča in v splošnem omejevalniki toplotnega toka. Razreševanje spontanih nastankov in dinamike je potrebno opraviti z analitično-numeričnim pristopom v kombinaciji s fluidno simulacijami. Vhodni podatki, bodisi izboljšana analitična formulacija ali izboljšani surovi nizi podatkov, ki vsebujejo prostorsko-časovne kinetične faktorje (omejevalniki in robni pogoji), bo pridobljeni s kombiniranjem kinetične simulacije scenarijev za ITER in eksperimentalnih podatkov, ekstrapoliranih na ITER iz obstoječih tokamakov (npr. JET). Ta prispevek opisuje prve rezultate rešavanja problemov ELM-ov v simulacije ITER v pogojih visokih zmogljivosti, in sicer z uporabo 1D3V elektrostatične paralelne kode delcev v celicah (PIC) BIT1. Ta koda se uporablja za preučevanje kinetičnih učinkov in za pridobivanje časovno odvisnih kinetičnih faktorjev prenosa toplote plašča tarče. V drugem delu te naloge se kinetični faktorji uporabljajo za formulacijo fluidnih robnih pogojev za izračun toplotne obremenitve tarče ELM-a z uporabo kode SOLPS-ITER. Poleg uporabe teoretičnih metod (poskus s semi-analitičnimi rezultati) je potrebno posodobiti in/ali nadgraditi ter uporabiti posebne kinetične in fluidne algoritme za simulacijo plazme (BIT1 in SOLPS-ITER). Sklopitev BIT1-SOLPS-ITER nam omogoča raziskovanje kinetičnih učinkov na tarče s primerjavo moči in tokov delcev iz časovno odvisnih simulacij Type-I ELM-ov. Ključni element te naloge je ustvariti takšne simulacije, ki bi ustrezale obema kodama. Pristop za to je najprej oblikovanje plazme v stanju dinamičnega ravnovesja na BIT1 s ciljem, da se poiščejo robni pogoji in omejevalniki toka, nato pa njihova uporaba v fluidni kodi SOLPS-ITER kot ključ za nadzor toplotnih obremenitev, ki nastanejo na divertorju tokamaka. Zaradi kompleksnosti ELM-a med dogodkom popolni teoretični opis za to ne obstaja. V SOLPS-ITER je najpreprostejša metoda za simulacijo ELM-a pred zagonom Type-I ELM-a sledeča: najprej za kratek časovni interval simulacija plazme brez ELM-a (faza ELM-free), nato se začne s simulacijo Type-I ELM-a in na koncu se izklopi ELM in opazuje, kaj se dogaja s plazmo po ELM-u (post-ELM). Pred uporabo te metode za ITER je bil narejen preizkus na JET. V tem delu niso prisotni le rezultati za ITER, ampak tudi rezultati za JET, za katerega se uporablja isto metodo za raziskave in nadzor ELM-a preko časovno odvisnih diagnostika.
Ključna značilnost fizike robnih ELM-ov je odlaganja energije, opažene na tarčah. ELM je absolutna nestabilnost plazme od jedra do območja SOL. Na osnovi te hipoteze so bile prvič opravljene združene simulacije z BIT1 in SOLPS-ITER kodami na primeru ITER. Na podlagi tega dela bi za celotno raziskavo ELM-a bile potrebne dodatne študije.
|