Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Robust stride segmentation of inertial signals based on local cyclicity estimation
ID
Šprager, Sebastijan
(
Avtor
),
ID
Jurič, Matjaž B.
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(2,56 MB)
MD5: 2F057048A652EBFB2CF98DF53E0F632E
URL - Izvorni URL, za dostop obiščite
http://www.mdpi.com/1424-8220/18/4/1091
Galerija slik
Izvleček
A novel approach for stride segmentation, gait sequence extraction, and gait event detection for inertial signals is presented. The approach operates by combining different local cyclicity estimators and sensor channels, and can additionally employ a priori knowledge on the fiducial points of gait events. The approach is universal as it can work on signals acquired by different inertial measurement unit (IMU) sensor types, is template-free, and operates unsupervised. A thorough evaluation was performed with two datasets: our own collected FRIgait dataset available for open use, containing long-term inertial measurements collected from 57 subjects using smartphones within the span of more than one year, and an FAU eGait dataset containing inertial data from shoe-mounted sensors collected from three cohorts of subjects: healthy, geriatric, and Parkinson’s disease patients. The evaluation was performed in controlled and uncontrolled conditions. When compared to the ground truth of the labelled FRIgait and eGait datasets, the results of our evaluation revealed the high robustness, efficiency (F-measure of about 98%), and accuracy (mean absolute error MAE in about the range of one sample) of the proposed approach. Based on these results, we conclude that the proposed approach shows great potential for its applicability in procedures and algorithms for movement analysis.
Jezik:
Angleški jezik
Ključne besede:
inertial sensors
,
stride segmentation
,
gait assessment
,
inertial signals
,
biomedical signal processing
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FRI - Fakulteta za računalništvo in informatiko
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2018
Št. strani:
24 str.
Številčenje:
Vol. 18, iss. 4, art. 1091
PID:
20.500.12556/RUL-131859
UDK:
004.93:621.391
ISSN pri članku:
1424-8220
DOI:
10.3390/s18041091
COBISS.SI-ID:
1537764547
Datum objave v RUL:
05.10.2021
Število ogledov:
811
Število prenosov:
162
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Sensors
Skrajšan naslov:
Sensors
Založnik:
MDPI
ISSN:
1424-8220
COBISS.SI-ID:
10176278
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
04.04.2018
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
inercialni senzorji
,
segmentacija korakov
,
ocenjevanje hoje
,
inercijski signali
,
obdelava biomedicinskih signalov
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj