Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Estimation of alpine skier posture using machine learning techniques
ID
Nemec, Bojan
(
Avtor
),
ID
Petrič, Tadej
(
Avtor
),
ID
Babič, Jan
(
Avtor
),
ID
Supej, Matej
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(3,84 MB)
MD5: DC0F6CAB45385C291C8B769D04D7D78C
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/1424-8220/14/10/18898
Galerija slik
Izvleček
High precision Global Navigation Satellite System (GNSS) measurements are becoming more and more popular in alpine skiing due to the relatively undemanding setup and excellent performance. However, GNSS provides only single-point measurements that are defined with the antenna placed typically behind the skier’s neck. A key issue is how to estimate other more relevant parameters of the skier’s body, like the center of mass (COM) and ski trajectories. Previously, these parameters were estimated by modeling the skier’s body with an inverted-pendulum model that oversimplified the skier’s body. In this study, we propose two machine learning methods that overcome this shortcoming and estimate COM and skis trajectories based on a more faithful approximation of the skier’s body with nine degrees-of-freedom. The first method utilizes a well-established approach of artificial neural networks, while the second method is based on a state-of-the-art statistical generalization method. Both methods were evaluated using the reference measurements obtained on a typical giant slalom course and compared with the inverted-pendulum method. Our results outperform the results of commonly used inverted-pendulum methods and demonstrate the applicability of machine learning techniques in biomechanical measurements of alpine skiing.
Jezik:
Angleški jezik
Ključne besede:
alpine skiing
,
GNSS measurements
,
Inertial Measurement Unit (IMU) 
measurements
,
statistical models
,
LWPR
,
neural networks
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FŠ - Fakulteta za šport
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2014
Št. strani:
Str. 18898-18914
Številčenje:
Vol. 14, iss. 10
PID:
20.500.12556/RUL-130622
UDK:
53
ISSN pri članku:
1424-8220
DOI:
10.3390/s141018898
COBISS.SI-ID:
28015143
Datum objave v RUL:
16.09.2021
Število ogledov:
895
Število prenosov:
169
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Sensors
Skrajšan naslov:
Sensors
Založnik:
MDPI
ISSN:
1424-8220
COBISS.SI-ID:
10176278
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
13.10.2014
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj