Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
General Purpose Optimization Library (GPOL) : a flexible and efficient multi-purpose optimization library in Python
ID
Bakurov, Illya
(
Avtor
),
ID
Buzzelli, Marco
(
Avtor
),
ID
Castelli, Mauro
(
Avtor
),
ID
Vanneschi, Leonardo
(
Avtor
),
ID
Schettini, Raimondo
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(659,19 KB)
MD5: F9ED16F20216C641C001C494CDCBE058
URL - Predstavitvena datoteka, za dostop obiščite
https://www.mdpi.com/2076-3417/11/11/4774
Galerija slik
Izvleček
Several interesting libraries for optimization have been proposed. Some focus on individual optimization algorithms, or limited sets of them, and others focus on limited sets of problems. Frequently, the implementation of one of them does not precisely follow the formal definition, and they are difficult to personalize and compare. This makes it difficult to perform comparative studies and propose novel approaches. In this paper, we propose to solve these issues with the General Purpose Optimization Library (GPOL): a flexible and efficient multipurpose optimization library that covers a wide range of stochastic iterative search algorithms, through which flexible and modular implementation can allow for solving many different problem types from the fields of continuous and combinatorial optimization and supervised machine learning problem solving. Moreover, the library supports full-batch and mini-batch learning and allows carrying out computations on a CPU or GPU. The package is distributed under an MIT license. Source code, installation instructions, demos and tutorials are publicly available in our code hosting platform (the reference is provided in the Introduction).
Jezik:
Angleški jezik
Ključne besede:
optimization
,
evolutionary computation
,
swarm intelligence
,
local search
,
continuous 
optimization
,
combinatorial optimization
,
inductive programming
,
supervised machine learning
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
EF - Ekonomska fakulteta
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2021
Št. strani:
34 str.
Številčenje:
Vol. 11, iss. 11, art. 4774
PID:
20.500.12556/RUL-127465
UDK:
004:78
ISSN pri članku:
2076-3417
DOI:
10.3390/app11114774
COBISS.SI-ID:
64772611
Datum objave v RUL:
09.06.2021
Število ogledov:
1083
Število prenosov:
156
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Applied sciences
Skrajšan naslov:
Appl. sci.
Založnik:
MDPI
ISSN:
2076-3417
COBISS.SI-ID:
522979353
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
23.05.2021
Projekti
Financer:
FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:
DSAIPA/DS/0022/2018
Akronim:
GADgET
Financer:
FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:
PTDC/CCI-INF/29168/2017
Akronim:
BINDER
Financer:
FCT - Fundação para a Ciência e a Tecnologia, I.P.
Številka projekta:
DSAIPA/DS/0113/2019
Akronim:
AICE
Financer:
ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Program financ.:
Raziskovalni program
Številka projekta:
P5-0410
Naslov:
Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj