izpis_h1_title_alt

Samodejna razgradnja kritičnih organov v medicinskih slikah za načrtovanje radioterapije : magistrsko delo
ID Jeraj, Urban (Avtor), ID Špiclin, Žiga (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (2,70 MB)
MD5: AD87FD51BFDADDBA315D2400EB546608

Izvleček
Svetovna zdravstvena organizacija poroča, da je rak drugi najpogostejši povzročitelj smrti v svetovnem merilu. Zaradi starajoče se populacije v večini razvitih držav se vsako leto poveča incidenca rakavih obolenj, ki se jih običajno zdravi s kombinacijo kemoterapije, radioterapije in operativnega zdravljenja. V zadnjem času je napredek na področju radioterapije pri točnosti dostave doze ionizirajočega sevanja omogočil obsevanje tumorjev v bližnji okolici kritičnih organov. Pri načrtovanju obsevanja zato potrebujemo natančne razgradnje teh organov in tumorja. V praksi priprava razgradenj temelji na ročnem obrisovanju računalniško tomografskih (CT) slik, kar je za strokovnjake ponavljujoč in časovno potraten proces. Z uporabo metod globokega učenja lahko obrise iz CT slike avtomatsko razgradimo do stopnje, kjer so potrebni le še manjši popravki in tako drastično skrajšamo čas potreben za načrtovanje obsevanja. Poleg tega tako skrajšamo čakalne dobe za onkološke paciente, pri katerih je izid zdravljenja tesno povezan s časom, ki preteče med diagnozo in zdravljenjem. Na področju razgradnje medicinskih slik s konvolucijskimi nevronskimi mrežami je bilo v zadnjih letih objavljenih veliko znanstvenih člankov in študij, vendar so se avtorji večinoma osredotočali na razgradnjo ene specifične anatomske strukture. Pri takem pristopu je težko ovrednotiti delovanje modela za druge anatomske strukture, kot so kritični organi, ki jih je lahko tudi do nekaj deset, pri čemer so nekateri dobro, drugi pa precej slabo razločeni od okoliških tkiv v CT sliki. Cilji naloge so zato bili (i) v znanstveni literaturi poiskati glede na kakovost najboljše metode razgradnje in (ii) jih prilagoditi za sočasno razgradnjo večih kritičnih organov v CT slikah in (iii) izvesti objektivno primerjalno vrednotenje kakovosti razgradnje. Za razgradnjo smo uporabili štiri uveljavljene metode DeepMedic, U-net, nnU-net in InnerEye, ki so temeljile na naprednih konvolucijskih nevronskih mrežah in jih prilagodili za sočasno razgradnjo večih struktur. Določili smo optimalne hiperparametre teh mrež z uporabo neodvisne validacijske množice CT slik. Razgradnje smo vrednotili z izračunom Dice-Sørensovega koeficienta in površinsko izvedenko le-tega. Za vrednotenje smo uporabili zbirke CT slik glave in vratu ter zbirko CT slik prsnega koša s pripadujočimi referenčnimi razgradnjami kritičnih organov. Poleg tega smo vrednotili tudi delovanje metod na zbirki CT slik pljuč z referenčnimi razgradnjami območja rakavega tkiva (GTV). Izvedli smo tudi eksperimente delno nadzorovanega učenja, pri katerih smo na CT slikah glave in vratu, ki nimajo referenčnih razgradenj, generirali razgradnje z izbranimi metodami, jih pridružili učni množici ter nato ponovili učenje in vrednotenje nevronskih mrež. Vse preizkušene metode so se izkazale kot uporabne za skrajšanje časa priprave razgradenj anatomskih struktur, glede na priporočila o minimalni kakovosti razgradnje v literaturi. Pri trenutnih implementacijah opisanih metod bi moral strokovnjak pregledati in popraviti manjše dele obrisov kritičnih struktur in zato metode niso primerne za samostojno uporabo brez kasnejšege preverbe obrisov. Najboljše rezultate je dala metoda nnU-Net, ki je zato najbolj primerna kot osnova za implementacijo v kliničnem okolju, njena modularna zgradba pa omogoča relativno enostaven nadaljnji razvoj in eksperimente. Rezultati avtomatske razgradnje območja rakavega tkiva pljuč kažejo, da so vse testirane metode v trenutnem stanju neprimerne za razgradnjo tumorjev, ker je potrebno kasneje narediti zelo veliko ročnih popravkov. V tem primeru je očna razgradnja v praksi še vedno časovno bolj učinkovita. Rezultati eksperimentov delno nadzorovanega učenja kažejo, da je v določenih primerih možno uporabiti medicinske slike brez primernih referenčnih razgradenj za izboljšavo delovanja obstoječih modelov. Izvedeni eksperimenti kažejo na veliko uporabno vrednost preizkušenih metod pri pripravi razgradenj kritičnih organov za načrtovanje obsevanja in manjšo uporabno vrednost za razgradnjo območja rakavega tkiva. Zaradi omejene velikosti uporabljene učne in testne zbirke slik je negotovost rezultatov velika in bi bilo v nadaljevanju dela potrebno eksperimente ponoviti z večjimi zbirkami slik, predvsem pri razgradnji območij rakavega tkiva zaradi zelo visoke patološke variabilnosti.

Jezik:Slovenski jezik
Ključne besede:Rak, radioterapija, anatomske strukture, kakovost razgradenj, CT, strojno učenje, globoke nevronske mreže.
Vrsta gradiva:Magistrsko delo/naloga
Tipologija:2.09 - Magistrsko delo
Organizacija:FE - Fakulteta za elektrotehniko
Kraj izida:Ljubljana
Založnik:[U. Jeraj]
Leto izida:2021
Št. strani:XXIV, 79 str.
PID:20.500.12556/RUL-127403 Povezava se odpre v novem oknu
UDK:004.93:616-006(043.3)
COBISS.SI-ID:66199043 Povezava se odpre v novem oknu
Datum objave v RUL:04.06.2021
Število ogledov:964
Število prenosov:125
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Auto-contouring of organs-at-risk in medical images for radiotherapy planning : magistrski študijski program druge stopnje Elektrotehnika
Izvleček:
According to the World Health Organization reports, cancer is the second leading cause of death world wide. Additionally, aging of the general populations in most developed countries is causing a rise in the number of newly discovered cancer cases reported each year. The majority of patients are treated with a combination of chemotherapy, radiotherapy and surgical treatment. Recent advances in radiotherapy made it possible to deliver radiation more precisely, allowing irradiation of tumors much closer to surrounding anatomical structures (i.e. organs at risk). In order to utilize the available dose delivery precision, the radiotherapy planning must also be conducted with a high degree of precision, for which accurate segmentations of organs at risk from computed tomography (CT) images are a prerequisite. Manual CT segmentation is a repetitive and time consuming process. Research works report on successful automation of segmentation using convolutional neural networks, which seems to provide reasonable segmentations such that only minor manual corrections are needed, thereby rendering the overall contouring process more time efficient. The shorter organs-at-risk segmentation and radiotherapy planning times could therefore reduce the issue of long waiting lines, which are especially problematic in the oncology departments, where treatment success rate is inversely proportional to the time needed from diagnosis to treatment. In recent years many research articles have been published, where researchers developed convolutional neural networks for the segmentation of a single anatomical structure. Without extensive evaluation, it is difficult to predict how such a model or method would perform on other, on simultaneously on many, anatomical structures, such as the organs at risks, of which many are poorly discernible from surrounding tissue. Therefore, the aims of this thesis were (i) to identify the state-of-the-art segmentation methods in scientific literature, (ii) to adapt those methods for simultaneous segmentation of multiple organs at risk in CT images, and (iii) perform an objective and comparative evaluation of segmentation performances. Four different methods for automatic 3D image segmentation, i.e. DeepMedic, U-net, nnU-net in InnerEye, all based on convolutional neural networks, were chosen based on their state-of-the-art performance as reported in the literature. The methods were adapted for multi-organ segmentation and their hyperparameters tuned using an independent validation dataset. The segmentations were evaluated using the Dice-Sørensen coefficient and its surface-based variant. For evaluation purposes we applied the methods for organs at risk segmentation on collections of CT images of head and neck and a collection of thorax CT images. Additionally, we evaluated gross tumor region segmentation on a collection of CT images of lung cancer cases. We also performed experiments using semi-supervised learning principles, where we utilized the CT images without reference segmentation to augment the training dataset and further re-train and refine the segmentations. Analysis of segmentation results showed that all tested methods yield usable organs-at-risk contours in terms of the need for additional manual segmentation, thereby substantially reducing the time needed for segmentation according to the published guidelines. In all current implementations of tested methods, however, an expert would need to verify and correct the generated segmentations before they could be used in the radiotherapy planning process. The method that performed the best, consistently on all tests, was the nnU-Net. The modular structure of this method allows for easy modification of individual components. Furthermore, the results of lung tumor segmentation showed that the tested methods were not yet suitable for tumor segmentation, since it would take more time to correct the obtained segmentations than to create them manually in the first place. The results of experiments performed using semi-supervised learning showed that the CT images without reference segmentations could be used in some cases to enhance the segmentation performance. The performed experiments indicate that the tested methods, if incorporated at the start of the current manual segmentation process, could be beneficial in terms of time savings to perform organs-at-risk contours. Furthermore, the methods do not seem usable yet in terms of lung tumor segmentation, possibly due to the limited number of training, validation and testing image collections. Subsequently, the results' confidence interval was large and the priority in any further work should be to increase the number of cases.

Ključne besede:Cancer, radiotherapy, anatomical structures, quality of segmentation, CT, machine learning, deep learning, neural networks.

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj