Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali pa uporabite sodobnejši brskalnik.
Nacionalni portal odprte znanosti
Odprta znanost
DiKUL
slv
|
eng
Iskanje
Brskanje
Novo v RUL
Kaj je RUL
V številkah
Pomoč
Prijava
Evaluating magnetocaloric effect in magnetocaloric materials : a novel approach based on indirect measurements using artificial neural networks
ID
Maiorino, Angelo
(
Avtor
),
ID
Del Duca, Manuel Gesù
(
Avtor
),
ID
Tušek, Jaka
(
Avtor
),
ID
Tomc, Urban
(
Avtor
),
ID
Kitanovski, Andrej
(
Avtor
),
ID
Aprea, Ciro
(
Avtor
)
PDF - Predstavitvena datoteka,
prenos
(4,41 MB)
MD5: 748DB15658FC7E70196C3C8CA500787C
URL - Izvorni URL, za dostop obiščite
https://www.mdpi.com/1996-1073/12/10/1871
Galerija slik
Izvleček
The thermodynamic characterisation of magnetocaloric materials is an essential task when evaluating the performance of a cooling process based on the magnetocaloric effect and its application in a magnetic refrigeration cycle. Several methods for the characterisation of magnetocaloric materials and their thermodynamic properties are available in the literature. These can be generally divided into theoretical and experimental methods. The experimental methods can be further divided into direct and indirect methods. In this paper, a new procedure based on an artificial neural network to predict the thermodynamic properties of magnetocaloric materials is reported. The results show that the procedure provides highly accurate predictions of both the isothermal entropy and the adiabatic temperature change for two different groups of magnetocaloric materials that were used to validate the procedure. In comparison with the commonly used techniques, such as the mean field theory or the interpolation of experimental data, this procedure provides highly accurate, time-effective predictions with the input of a small amount of experimental data. Furthermore, this procedure opens up the possibility to speed up the characterisation of new magnetocaloric materials by reducing the time required for experiments.
Jezik:
Angleški jezik
Ključne besede:
magnetic refrigeration
,
magnetocaloric effect
,
gadolinium
,
artificial neural network
,
modelling
,
LaFe$_{13−x−y}$Co$_x$Si$_y$
Vrsta gradiva:
Članek v reviji
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
FS - Fakulteta za strojništvo
Status publikacije:
Objavljeno
Različica publikacije:
Objavljena publikacija
Leto izida:
2019
Št. strani:
22 str.
Številčenje:
Vol. 12, iss. 10, art. 1871
PID:
20.500.12556/RUL-126685
UDK:
536:697(045)
ISSN pri članku:
1996-1073
DOI:
10.3390/en12101871
COBISS.SI-ID:
16618011
Datum objave v RUL:
04.05.2021
Število ogledov:
1236
Število prenosov:
175
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Kopiraj citat
Objavi na:
Gradivo je del revije
Naslov:
Energies
Skrajšan naslov:
Energies
Založnik:
Molecular Diversity Preservation International
ISSN:
1996-1073
COBISS.SI-ID:
518046745
Licence
Licenca:
CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:
http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:
To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:
16.05.2019
Sekundarni jezik
Jezik:
Slovenski jezik
Ključne besede:
magnetno hlajenje
,
magnetokalorični učinek
,
gadolinij
,
nevronske mreže
Podobna dela
Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:
Nazaj