izpis_h1_title_alt

NAPREDNI MAGNETNI SISTEMI MEMS
ID BERČAN, DAMJAN (Avtor), ID Trontelj, Janez (Mentor) Več o mentorju... Povezava se odpre v novem oknu

.pdfPDF - Predstavitvena datoteka, prenos (17,01 MB)
MD5: FDAD3E5B64BFACB2F6F026FECE088283

Izvleček
V prvem delu disertacije je predstavljen nov prilagojen model Hallovega elementa, ki je modeliran s strojno-opisnim jezikom Verilog-A. Verilog-A je namenjen modeliranju in opisu analognih vezij. Nov model omogoča lažje spreminjanje parametrov, ki opisujejo njegove lastnosti, odvisne od tehnologije in predstavlja izhodišče pri načrtovanju novega magnetnega mikrosistema. Učinkovitost simulacijskega modela smo preverili z meritvijo izdelanih integriranih vezij. Izmerili smo občutljivost Hallovega elementa na zunanje in notranje magnetno polje, temperaturno občutljivost in ničelno napetost. Prav tako smo preverili vpliv mehanske obremenitve na magnetno občutljivost Hallovega senzorja. Hallov element je bil z zlatimi žičkami povezan (bondiran) v keramično ohišje. V drugem delu disertacije rešujemo bistveni slabosti magnetnih sistemov na osnovi Hallovega elementa v CMOS (ang. Complementary Metal Oxide Semiconductor) tehnologiji, to sta velika poraba energije in relativno majhna občutljivost na magnetno polje. Takšni sistemi pogosto vsebujejo polje senzorjev bodisi za izboljšanje učinkovitosti sistema, na primer za izboljšanje ločljivosti, bodisi zaradi zahtev aplikacije. Pri aplikacijah, ki zahtevajo maksimalno možno ločljivost z uporabo polja Hallovih elementov je smiselno Hallove elemente priključiti direktno na napajalno napetost, zato da zagotovimo maksimalni možni delovni tok senzorja in posledično maksimalno občutljivost na magnetno polje. Konvencionalno imajo takšni integrirani sistemi veliko porabo zaradi števila senzorjev in zaradi relativno majhne upornosti posameznega Hallovega elementa. Nova metoda procesiranja Hallovega signala izkorišča raciometričnost senzorja in ohranja njegovo maksimalno občutljivost na magnetno polje ter zmanjša porabo magnetnega mikrosistema. Težavo smo odpravili z uporabo napredne metode pulznega krmiljenja delovnega toka Hallovega elementa, kar bistveno zmanjša njegov efektivni delovni tok. Metoda rešuje opisani problem, kjer se poraba Hallovega elementa zmanjša s faktorjem 1/X pri isti občutljivosti, ali pa se poveča občutljivost s faktorjem X pri isti porabi, kjer faktor X predstavlja razmerje med periodo vzorčenja Hallovega signala in časom, ko je magnetni sistem aktiven in se izvaja meritev Hallovega signala. Ugotovili smo, da uporabljena metoda krmiljenja delovnega toka Hallovega elementa zmanjša njegov efektivni delovni tok in posledično porabo celotnega vezja. Realno dosegljiv faktor X se giblje do 10. Integrirano vezje z metodo pulznega krmiljenja Hallovega elementa je izdelano v 0,35 m tehnologiji CMOS. Učinkovitost metode in začetne cilje smo preverili z evaluacijo izdelanega integriranega vezja.

Jezik:Slovenski jezik
Ključne besede:Simulacijski model, pulzno krmiljenje Hallovega elementa, optimizacijašuma in porabe, magnetni mikrosistem
Vrsta gradiva:Doktorsko delo/naloga
Organizacija:FE - Fakulteta za elektrotehniko
Leto izida:2020
PID:20.500.12556/RUL-125224 Povezava se odpre v novem oknu
Datum objave v RUL:08.03.2021
Število ogledov:1711
Število prenosov:282
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:ADVANCED MAGNETIC MEMS SYSTEMS
Izvleček:
The first part of the dissertation presents the new adapted Hall element model written in the hardware description language Verilog-A. Verilog-A is a modeling and description language for analog circuits. A new model makes it possible to easily change the parameters that describe its properties depending on the technology. The model serves as a starting point for the design of a new magnetic microsystem. The efficiency of the simulation model is verified by the measurements of the manufactured integrated circuits. We measured their sensitivity to external and internal magnetic fields, their temperature sensitivity and offset voltage. In addition, we took into account the mechanical stress which affects the magnetic sensitivity of the Hall element. The Hall element was bonded into the ceramic package using gold wires. In the second part of the dissertation we deal with two major disadvantages of the magnetic microsystem based on the Hall element in CMOS (Complementary Metal Oxide Semiconductor) technology. The first is the high power consumption and the second is the relatively low sensitivity to the magnetic field. In general, such systems use an array of Hall sensors to improve their efficiency, e.g. to increase the resolution or due to the requirements of the application. For applications that require maximum sensitivity, the array of Hall elements have been connected directly to the power supply to ensure maximum bias current to the sensor, thus achieving the highest possible sensitivity to the magnetic field. Conventionally, such integrated circuits have high power consumption due to the number of Hall elements used and their relatively low resistance. The new method takes advantage of the ratiometric’s magnetic microsystem and preserves its maximum sensitivity to the magnetic field. To reduce the high power consumption, the advanced pulse-controlled Hall element bias current is used, which reduces its effective bias current. The power consumption is reduced by a factor of 1/X for the same sensitivity or the sensitivity is increased by a factor of X for the same power consumption, where the factor X is defined as the ratio between the sampling period of the Hall signal and the time when the magnetic microsystem is active and the Hall signal measurement is performed. It has been discovered that the new method reduces both the bias current of the Hall element and consequently the power consumption of the magnetic microsystem. The maximum practically achievable X factor is 10. The advanced pulse-controlled current method is implemented in the integrated circuit manufactured in the 0.35 m CMOS technology. The efficiency of the proposed method and the research objectives are evaluated by measuring the manufactured integrated circuit.

Ključne besede:Simulation model, pulse-controlled Hall element, noise and powerconsumption optimization, magnetic microsystem

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj