izpis_h1_title_alt

Večrazsežno statistično obvladovanje procesa z mešanimi podatki in njegova uporaba na področju zdravstvene oskrbe
ID Majdič, Neža (Avtor), ID Vidmar, Gaj (Mentor) Več o mentorju... Povezava se odpre v novem oknu, ID Blagus, Rok (Komentor)

.pdfPDF - Predstavitvena datoteka, prenos (3,15 MB)
MD5: 59892E382F65B2E4FA17CAF6B75FAEDD

Izvleček
Izvleček Izhodišče: Večrazsežno statistično obvladovanje procesa (VR SOP) z mešanimi podatki (nekaj spremenljivk, ki opisujejo proces, je številskih in nekaj opisnih) je razmeroma novo in manj raziskano področje statistike. Glavni pristopi na tem področju so zmanjševanje števila razsežnosti, neparametrični pristopi, pristopi s področja podatkovnega rudarjenja ter merjenje razdalj med točkami (Gowerjeva in evklidska razdalja). V raziskavi smo se osredotočili na slednje v povezavi s Hotellingovo statistiko T2, ki je temelj VR SOP za številske podatke. Metode: Preučili smo deset metod za VR SOP: lokalno in globalno evklidsko razdaljo, lokalno in globalno Gowerjevo razdaljo, običajni T2, T2 z Gowerjevo razdaljo z ali brez ponovnega vzorčenja, T2 z Gowerjevo razdaljo s ponovnim vzorčenjem na podlagi analize glavnih komponent (PCA) ter permutacijski različici T2 z Gowerjevo razdaljo in globalne Gowerjeve razdalje. Pripravili smo funkcijo v okolju R, ki izvede eno ponovitev simulacije za naštete metode in za vsako metodo izračuna opaženo napako I. vrste (velikost testa) in občutljivost (delež pravilno prepoznanih simuliranih primerov izven nadzora) na podlagi presojanja o simuliranih primerih (ki so bili bodisi pod nadzorom bodisi izven nadzora). V drugem delu raziskave smo metode preizkusili na podatkih o skupini 100 bolnikov po amputaciji, ki so na Univerzitetnem rehabilitacijskem inštitutu RS – Soča leta 2014 prejeli dokončno podkolensko protezo. Rezultati: Opažena napaka I. vrste v splošnem ni bila problematična, razen pri metodi T2, (previsoka pri asimetrični porazdelitvi številskih spremenljivk, sicer prenizka). Metoda Gowerjeve razdalje se je v splošnem izkazala bolje pri večjem številu opisnih spremenljivk in pri asimetrično porazdeljenih številskih spremenljivkah. V večini simulacij (tj. razen takrat, ko so bila odstopanja simuliranih primer izven nadzora zelo velika) se je občutljivost v splošnem pokazala kot nizka. Z vidika opažene napake I. vrste je bilo ustreznih več metod: T2 z Gowerjevo razdaljo s ponovnim vzorčenjem na podlagi PCA, permutacijska globalna Gowerjeva razdalja, T2 z Gowerjevo razdaljo s ponovnim vzorčenjem, globalna Gowerjeva razdalja in globalna evklidska razdalja. Pri preizkusu metod na realnih podatkih sta se z dejanskim stanjem najbolj skladali lokalna evklidska in lokalna Gowerjeva razdalja. Slednja je imela tudi najnižjo opaženo napako I. vrste. Zaključek: Na področju kakovosti zdravstvene oskrbe, kjer imamo pogosto opravka z mešanimi podatki, lahko na podlagi naših ugotovitev izboljšamo veljavnost večrazsežnih analiz. Predlagane metode smo uporabili na podatkovju s področja zdravstvene oskrbe in pokazali njihovo praktično uporabnost.

Jezik:Slovenski jezik
Ključne besede:Kontrolna karta, Statistično obvladovanje procesa, Gowerjeva razdalja, Rehabilitacija, Večrazsežna analiza
Vrsta gradiva:Doktorsko delo/naloga
Organizacija:MF - Medicinska fakulteta
Leto izida:2020
PID:20.500.12556/RUL-124134 Povezava se odpre v novem oknu
COBISS.SI-ID:45696259 Povezava se odpre v novem oknu
Datum objave v RUL:06.01.2021
Število ogledov:2130
Število prenosov:173
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Sekundarni jezik

Jezik:Angleški jezik
Naslov:Multivariate statistical process control for mixed-type data and its use in health care.
Izvleček:
Abstract Background: Multivariate statistical process control (MVSPC) based on mixed-type data (MTD) is a very recent and little-known field. We review the possibilities for MVSPC with MTD (i.e., when some variables are numeric and some categorical, which is common in health care). The main approaches to this problem are: dimensionality reduction yielding numeric dimensions, nonparametric approach, machine-learning approach, and measuring distances between MTD-points (Gower distance, Euclidean distance). Our research focused on the latter, together with the Hotelling T2 statistic (which is the basis for MVSCP for numeric data). Methods: We compared ten methods for MVSCP: local and global Euclidean distance, local and global Gower distance, standard T2, T2 using Gower distance with or without bootstrap, T2 using Gower distance with bootstrap based on principal component analysis, and permutational implementations of T2 using Gower distance and global Gower distance. We wrote an R function that performs one iteration of the simulations for each method and calculates observed type I error (test size) and sensitivity (proportion of correctly identified simulated out-of-control cases) based on the inference on the simulated cases (which were either in-control or out-of-control). In the second part of our research, we tested the methods using a dataset on 100 patients after amputation who received a permanent transtibial prosthesis at the University Rehabilitation Institute in Ljubljana in 2014. Results: In general, observed type I error was not problematic, except with the T2 method (too high when numeric variables were asymmetrically distributed, and too low otherwise). The Gower distance method performed better with a larger number of categorical variables and with asymmetrically distributed numeric variables. In the majority of the simulations (i.e., except when the deviations of the out-of-control cases were very large), sensitivity turned out to be low. In terms of observed type I error, several methods proved to be adequate: T2 using Gower distance with bootstrap based on PCA, permutational global Gower distance, T2 using Gower distance with bootstrap, global Gower distance and global Euclidean distance. When testing the methods on the real data, local Euclidean distance and local Gower distance were in the highest agreement with the actual in- or out-of-control status. The latter also had the lowest observed type I error rate. Conclusion: Our finding can lead to improvement of multivariate analyses in the field of health care quality, where mixed data are often encountered. The proposed methods were applied on a dataset from the field of health care provision and proved to be useful in practice.

Ključne besede:Control Chart, Statistical Process Control, Gower Distance, Rehabilitation, Multivariate Analysis

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj