During the development process of the left ventricular assist devices (LVAD) the computational fluid dynamics (CFD) is increasingly used which is a valuable tool if validated with the experiment. In this thesis we have focused on CFD simulations of one phase, newtonian flow with a constant temperature using advanced turbulence models from DES family and SAS formulation. The comparison has been performed with widely used SST-kω model and all cases have been validated experimentally.
Our task was divided into three parts (research cases). In the first case we have investigated the nozzle benchmark which was a part of a Food and Drug Administration (FDA) backed research iniciative with the goal to promote the CFD in mechanics in medicine. In the second case the Δp(Q) flow characteristics were compared in small commercial HeartAssist 5 LVAD using water as fluid. In the third case the investigation was performed on a transparent housing built on a comercial aVAD small pump, where the numerical simulations were compared with the results of Particle Image Velociometry (PIV) method.
It has been concluded that the best results were obtained by SBES (I. and III. research case) and SAS turbulence models (II. research case). SBES turbulence model is the latest most updated derivative of the DES model. The criteria for the comparison was chosen like velocity, pressure difference and simulation time on the same hardware setup.
|