Končne diference, generirane z radialnimi baznimi funkcijami (RBF-FD), so metoda za numerično reševanje parcialnih diferencialnih enačb (PDE), ki jo v delu razvijemo v avtomatsko adaptivno metodo. RBF-FD spada med brezmrežne metode, ki enačbe rešujejo v močni obliki. Brezmrežnost pomeni, da metoda ne potrebuje diskretizacije domene problema v obliki mreže, temveč lahko za diskreten izračun uporabi le množico ustrezno razporejenih točk. Velik del doktorata je posvečen algoritmom za generiranje diskretizacijskih točk. Razvit je tudi nov algoritem za konstrukcijo diskretizacij v poljubnih dimenzijah s prostorsko spremenljivo diskretizacijsko razdaljo. Algoritem je primeren za generiranje točk v notranjosti in na robu domene, dokazano ohranja predpisano minimalno razdaljo med točkami in potrebuje $O(N \log N)$ časa za generiranje $N$ točk. Konstruirane množice točk so kompatibilne z RBF-FD metodo in posledično algoritem uporabimo kot osnovo novega postopka za $h$-adaptivno reševanje eliptičnih problemov. Obnašanje postopka je analizirano na klasičnih dvo- in tro-dimenzionalnih Poissonovih problemih. Poleg tega je rešenih tudi več kontaktnih problemov iz linearne elastostatike, s katerimi pokažemo uspešno goščenje in redčenje diskretizacije, ki se avtomatsko prilagaja problemu, pri čemer razmerje med najgostejšimi in najredkejšimi deli diskretizacije naraste tudi do več milijonov. Na koncu je predstavljena programska oprema, razvita za to delo in širše raziskave, objavljena pa je tudi na spletu kot odprtokodna knjižnica, namenjena reševanju PDE v močni obliki z brezmrežnimi metodami.
|