Graphene, a material of exceptional thermal, electrical, optical and mechanical properties, is becoming increasingly interesting for applications in modern electrical devices. By adapting its properties to a certain purpose, i.e. by its functionalization, it is possible to make high-capacity electrode systems. Of particular importance is the application of graphene in Li-organic battery systems, whose main problem is the dissolution of redox active molecules in conventional electrolytes over time. Graphene can play a dual role in these systems: 1) extremely porous, insoluble substrate for binding redox active molecules, and 2) charge carrier. In order to find a material that would meet the above criteria, the possibility of functionalization of two graphene materials with different specific surfaces and with different content of oxygen groups, namely reduced graphene oxide (rGO) and its precursor, graphene oxide (GO), with selected redox active molecules (2-aminoanthraquinone and anthraquinone-2-diazonium tetrafluoroborate) by ultrasonic cavitation has been studied. Using scanning electron microscopy, Brunauer–Emmett–Teller method, Raman spectroscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis with mass spectrometry, a detailed analysis of the synthesized materials was performed. A significant advantage of the diazonium salt approach was observed, where the application of ultrasonic cavitation significantly contributed to the functionalization of the materials. The analyses showed the success of the chosen method of functionalization, especially in the case of GO.
|