Magistrsko delo obravnava obojestranske koristi med vizualnim sledenjem objektov in segmentacijo objektov v videoposnetkih. Plodovi te obravnave so sledilniki, ki temeljijo na obstoječi metodi sledenja D3S. Poleg visoko zanesljive lokalizacije je sledilnik D3S zmožen tudi natančne segmentacije sledenega objekta, kar dodatno prispeva k uspešnosti metode. To dejstvo tesneje povezuje pričujoči disciplini računalniškega vida. Skozi vsebino dela se koristi, ki jih prinaša segmentacija v sožitju z vizualnim sledenjem objektov, kažejo v več predlaganih sledilniških arhitekturah. Te arhitekture v prizadevanju za izboljšanje natančnosti in robustnosti metode D3S proces sledenja nadgrajujejo ter bogatijo z novimi informacijami. Ena izmed predlaganih arhitektur, na primer, združuje enaki, vendar prvotno ločeni ogrodji omrežja v eno samo v prid hitrosti sledenja. Spet druga vpeljuje operatorje CARAFE na mestih bilinearne interpolacije, in sicer z namenom vključitve informacij širšega konteksta v vzorčenje značilk. Iz enakih razlogov je v tretji arhitekturi dodan mehanizem pozornosti. Poleg novih arhitektur delo obsega tudi konstrukcijo sintetičnega nabora podatkov, navdih čemur so pomanjkljivosti obstoječih zbirk podatkov. Delo se zaključi z eksperimentalno analizo kot merilom uspešnosti in ustreznosti predlaganih metod ter krajšo razpravo.
|