izpis_h1_title_alt

Existence results for some problems on Riemannian manifolds
ID Molica Bisci, Giovanni (Avtor), ID Repovš, Dušan (Avtor), ID Vilasi, Luca (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (687,65 KB)
MD5: A065995035B257300C66B7B468561683

Izvleček
By using variational techniques we provide new existence results for Yamabe-type equations with subcritical perturbations set on a compact ▫$d$▫-dimensional (▫$d \ge 3$▫) Riemannian manifold without boundary. As a direct consequence of our main theorems, we prove the existence of at least one solution to the following Yamabe-type problem ▫$$\begin{cases} -\Delta_gw + \alpha(\sigma)w = \mu K(\sigma)w^{\frac{d+2}{d-2}} + \lambda (w^{r-1} + f(w)), \quad \sigma \in \mathcal{M} \\ w \in H^2_\alpha(\mathcal{M}), \quad w>0 \; \text{in} \; \mathcal{M}, \end{cases}$$▫ here, as usual, ▫$\Delta_g$▫ denotes the Laplace-Beltrami operator on ▫$(\mathcal{M},g)$▫, ▫$\alpha$▫, ▫$K:\mathcal{M} \to \mathbb{R}$▫ are positive (essentially) bounded functions, ▫$r \in (0,1)$▫, and ▫$f: [0,+\infty) \to [0,+\infty)$▫ is a subcritical continuous function. Restricting ourselves to the unit sphere ▫$\mathbb{S}^d$▫ via the stereographic projection, we furthermore solve some parametrized Emden-Fowler equations in the Euclidean case.

Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:PEF - Pedagoška fakulteta
FMF - Fakulteta za matematiko in fiziko
Leto izida:2020
Št. strani:Str. 677-706
Številčenje:Vol. 28, no. 3
PID:20.500.12556/RUL-118042 Povezava se odpre v novem oknu
UDK:517.956
ISSN pri članku:1019-8385
DOI:10.4310/CAG.2020.v28.n3.a6 Povezava se odpre v novem oknu
COBISS.SI-ID:22044675 Povezava se odpre v novem oknu
Datum objave v RUL:17.08.2020
Število ogledov:936
Število prenosov:334
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Communications in analysis and geometry
Skrajšan naslov:Commun. anal. geom.
Založnik:International Press
ISSN:1019-8385
COBISS.SI-ID:3760729 Povezava se odpre v novem oknu

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj