izpis_h1_title_alt

A machine learning approach to predict air quality in California
ID Castelli, Mauro (Avtor), ID Martins Clemente, Fabiana (Avtor), ID Popovič, Aleš (Avtor), ID Silva, Sara (Avtor), ID Vanneschi, Leonardo (Avtor)

.pdfPDF - Predstavitvena datoteka, prenos (7,34 MB)
MD5: D5CE63562DB8E1D18E69F2F60E67D3A4

Izvleček
Predicting air quality is a complex task due to the dynamic nature, volatility, and high variability in time and space of pollutants and particulates. At the same time, being able to model, predict, and monitor air quality is becoming more and more relevant, especially in urban areas, due to the observed critical impact of air pollution on citizens’ health and the environment. In this paper, we employ a popular machine learning method, support vector regression (SVR), to forecast pollutant and particulate levels and to predict the air quality index (AQI). Among the various tested alternatives, radial basis function (RBF) was the type of kernel that allowed SVR to obtain the most accurate predictions. Using the whole set of available variables revealed a more successful strategy than selecting features using principal component analysis. The presented results demonstrate that SVR with RBF kernel allows us to accurately predict hourly pollutant concentrations, like carbon monoxide, sulfur dioxide, nitrogen dioxide, ground-level ozone, and particulate matter 2.5, as well as the hourly AQI for the state of California. Classification into six AQI categories defined by the US Environmental Protection Agency was performed with an accuracy of 94.1% on unseen validation data.

Jezik:Angleški jezik
Ključne besede:informatics, ecology, artificial intelligence
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:EF - Ekonomska fakulteta
Različica publikacije:Objavljena publikacija
Leto izida:2020
PID:20.500.12556/RUL-118023 Povezava se odpre v novem oknu
UDK:659.2:004
ISSN pri članku:1076-2787
DOI:10.1155/2020/8049504 Povezava se odpre v novem oknu
COBISS.SI-ID:24544771 Povezava se odpre v novem oknu
Datum objave v RUL:13.08.2020
Število ogledov:1550
Število prenosov:672
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
Objavi na:Bookmark and Share

Gradivo je del revije

Naslov:Complexity
Skrajšan naslov:Complexity
Založnik:Wiley & Sons
ISSN:1076-2787
COBISS.SI-ID:1926171 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.
Začetek licenciranja:13.08.2020

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:informatika, ekologija, umetna inteligenca

Projekti

Financer:ARRS - Agencija za raziskovalno dejavnost Republike Slovenije
Številka projekta:P5-0410
Naslov:Digitalizacija kot gonilo trajnostnega razvoja posameznika, organizacij in družbe

Podobna dela

Podobna dela v RUL:
Podobna dela v drugih slovenskih zbirkah:

Nazaj